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Abstract

This paper addresses hop-constrained node survivable networks, i.e., networks protecting the demands
through node disjoint paths and, simultaneously, guaranteeing a maximum number of hops for all demand
paths in any failure situation. This problem is studied in the context of a MPLS over WDM network design
problem. Given the WDM network topology and the traffic demand matrix, which includes the location of
the edge LSRs, we jointly determine the location of the core LSRs and the lightpath routes that minimize
the total network cost. We consider constraints both at the optical and packet layers: at the WDM layer, we
consider a path constraint given by the maximum length of each lightpath and, at the MPLS layer, we consider
a QoS constraint, which combines a maximum delay requirement and a survivability requirement. An ILP
formulation is proposed for the design problem and a two-phase heuristic, derived from a decomposition of
the ILP model in two simpler ILP models that are solved sequentially, is also developed. Then, we compare
the cost of the network design solutions for two hop-constrained fault-tolerance mechanisms, which are
extreme in the sense of the network resources they require: the 1+1 protection and the 2-path diversity
routing. Computational results taken from instances with up to 50 nodes and 100 edges are given.
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I - Introduction
In recent years, Multi-Protocol Label Switching (MPLS) has been proposed as the solution to overcome
many of the performance and scaling problems that network operators are experiencing in their IP (Internet
Protocol) networks [1-2]. MPLS networks contain nodes, called Label Switching Routers (LSRs), and links
connecting nodes. MPLS organizes the network in domains, where edge LSRs define their boundary and
are the traffic demand ingress/egress nodes. Other nodes, named core LSRs, can exist on the network to
provide communications between edge LSRs. The forwarding of IP packets from ingress to egress LSRs is
done by Label Switched Paths (LSPs). In the ingress LSR, incoming IP packets are classified based on their
destination and required quality of service (QoS) and, depending on this classification, are forwarded through
the appropriate LSP towards an egress LSR.

More recently, the evolution of optical transmission and switching technologies offer the prospect for all-
optical networks based on Wavelength Division Multiplexing (WDM) and Optical Cross-Connects (OXCs)
[3]. In these networks, the optical connectivity between electrical endpoints can be established by all-optical
concatenations of WDM wavelengths, called lightpaths. Lightpaths have a limitation on their physical extent
due to various transmission impairments (e.g. attenuation, crosstalk, dispersion, nonlinearities). MPLS over
WDM is gaining significant attention due to the efficiency in resource utilization that can be achieved by
jointly considering the two network layers [4-7]. In these networks, lightpaths are routed over the physical



network (comprising OXCs connected through optical fibers) and LSPs are routed over the logical topology
of lightpaths (the virtual optical network).

The success of MPLS (and MPLS over WDM) is directly related with its capacity of supporting service
requirements that the current Internet is not able to do. In this work, we consider two of these requirements.
Firstly, the future Internet must support delay sensitive services like voice or video. An IP packet travelling
from ingress to egress undergoes a queuing delay in the transmitting interface of each LSR it traverses. The
total delay introduced by the network must be bounded to a maximum time value and in many cases queuing
is the dominant source of packet delays. Therefore, bounding the delay can be done by limiting the number
of queues traversed by each demand, which means that the maximum delay requirement can be supported by
routing the demands through paths that have a maximum number of hops. Secondly, the future Internet must
provide reliable services. A robust scheme for fault-tolerance must be present in the network to deal efficiently
with failure scenarios. In this work, two LSPs with node-disjoint paths are considered for each pair of edge
LSRs in order to achieve network robustness in the single failure scenarios. The methodologies developed in
this work enable us to compare the cost of the network design solutions for two fault-tolerance mechanisms
which are extreme in the sense of the network resources they require: the 1+1 protection mechanism where
the total demand is supported by both LSPs, and the 2-path diversity routing mechanism where each demand
is equally split by the two LSPs (in this case, only half of the demand is protected over any single failure).

In this paper, we consider a network design problem for MPLS over WDM networks. Given the topology
of the WDM layer, the location of the edge LSRs and the traffic demand matrix, we determine the core
LSR locations and the lightpath routes that minimize the total network cost, subject to constraints at both
network layers. At the WDM layer, we consider a path constraint given by the maximum length of each
lightpath, which accommodates the optical transmission impairments. At the MPLS layer, we consider a QoS
constraint, which combines the maximum delay requirement and the survivability requirement, where each
demand is supported by two hop-constrained node disjoint LSRs. The network cost includes both the costs of
LSR placements and lightpath placements. Following [7], we model the design problem in an expanded graph
that implicitly guarantees the WDM path constraints. We also use a hop-indexed based formulation (see [8],
[7] and [9]) to model the MPLS hop constraints. Additionally, we derive a two-phase heuristic, which results
from decomposing the model for the whole problem into two simpler ILP models that are solved sequentially
using a standard ILP package. With this two-phase heuristic, it is possible to solve problem instances that are
not solvable by using the model for the whole problem in a reasonable amount of time.

II - Network Design Model
Let the undirected graphG = (V,E) model the WDM network, whereV represents the OXC locations

andE represents the pairs of OXCs connected by optical fibers. LetS denote the set of edge LSRs, with
S ⊂ V . The parameterce gives the cost of installing a lightpath on edgee (we assume that this cost is
proportional to the length of the edge) anddi gives the cost of installing a core LSR on nodei ∈ V \ S.
We shall also say that a (s, t)-path is a sequence of arcs{(i1, j1), ..., (ik, jk)} such thati1 = s, jk = t and
jp = ip+1 for p = 1, ..., k − 1 and that aH-path is a path with at mostH hops.

Given that the only constraint involving the lightpaths is the maximum length and that the cost of a light-
path is proportional to its length, it is straightforward to observe that, in the optimal solution of the problem, a
lightpath between any two nodes is always routed along the shortest path on graphG. Thus, lettingL denote
the maximum length of each lightpath, we follow [7] and define an expanded graphG′ = (V,E′), whereE′

contains edges associated to pairs of nodes such that the shortest path connecting them inG does not exceed
L. In this graph,ce is the cost of installing a lightpath between its end nodes on the original graphG. The
advantage of modelling the problem in graphG′ is that the WDM path constraints are implicitly guaranteed.

To model the network design problem, we propose the Hop-MCF model, which is a survivability con-
strained version of the model presented in [7] and involves four sets of variables: i) binary variablesxe for all
e ∈ E′, indicating whether edgee is included in the solution; ii) binary variablesNi (i ∈ V \ S), indicating
whether a core LSR is put in operation in nodei; iii) integer variablesue for all e ∈ E′, indicating the number
of lightpaths installed on edgee and iv) variableswhpq

ij ∈ {0, 1, 2}, indicating the number of (p, q)-H-paths
including edge{i, j}, traversed in the direction fromi to j, in thehth position (as we shall show later, these
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variables can be redefined as 0-1 variables indicating whether edge{i, j} is traversed in the direction fromi
to j, in thehth position, in one of the paths fromp to q).

Hop-MCF model:

Minimize
∑
e∈E′

ceue +
∑

i∈V \S

diNi

subject to:∑
j∈V

w1pq
pj = 2 for all p, q ∈ S

∑
j∈V

w2pq
ij = w1pq

pi for all i ∈ V ; p, q ∈ S
(1)∑

j∈V

wh+1,pq
ij −

∑
m∈V

whpq
mi = 0 for all i 6= p;h = 2, ...,H − 1; p, q ∈ S

∑
j∈V

wHpq
jq = 2 for all p, q ∈ S

∑
h=1,...,H

whpq
ij +

∑
h=1,...,H

whpq
ji ≤ xe for all e = {i, j} ∈ E′; p, q ∈ S (2)

∑
p,q∈S

bpq

 ∑
h=1,...,H

whpq
ij +

∑
h=1,...,H

whpq
ji

 ≤ αue for all e = {i, j} ∈ E′ (3)

∑
i∈V

∑
h=1,...,H

whpq
ij ≤ Nj for all j ∈ V \S; p, q ∈ S (4)

∑
i∈V

∑
h=1,...,H

whpq
ij ≤ 1 for all j ∈ S\{p, q}; p, q ∈ S (5)

xe ∈ {0, 1} for all e = {i, j} ∈ E′ (6)

Nj ∈ {0, 1} for all j ∈ V \S (7)

ue ≥ 0 and integer for alle ∈ E′ (8)

whpq
ij , whpq

ji ∈ {0, 1, 2} for all e = {i, j} ∈ E′;h = 1, ...,H; p, q ∈ S (9)

whpq
qq ∈ {0, 1, 2} for all h = 2, ...,H; p, q ∈ S (10)

The objective function gives the total cost of the network solution. For each pair of nodesp, q ∈ S,
constraints(1) are taken from [9] and describe a hop-indexed network flow model guaranteeing that two
paths are sent from nodes to nodet and that each path follows a path with no more thanH hops. Note that
as in previous studies (see [7], [8] and [9]), this model contains "loop" variableswhpq

qq (h = 2, ...,H) with

zero cost to model situations where the (p, q)-H-path may contain fewer thanH arcs (that is,whpq
jq ≥ 1 for

somej ∈ V \ {q} and1 ≤ h ≤ H − 1). We also note that for each pair of nodesp, q ∈ S, the sub model
defined by constraints(1), (9) and(10) is a network flow model on an expanded layered network and so has
the advantage that the extreme points of its linear programming relaxation are integer-valued. Constraints(2)
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state that if an edge is traversed in some direction and some position for some pair of demand nodes, then that
edge must be included in the solution. Constraints(3) are the network loading constraints, guaranteeing that
there are enough lightpaths between each pair of LSRs (α is the bandwidth of a single lightpath) to support
the sum of the bandwidths of all LSPs that use these lightpaths (bpq is the traffic demand between edge LSRs
p, q ∈ S to be supported by each path). Constraints(4) guarantee that a core LSR is put in operation at each
visited node of the paths between any pair of nodesp, q ∈ S. These constraints, together with(5), guarantee
that for each pair of nodesp andq the paths are node-disjoint enabling us to redefine the variableswhpq

ij as
0-1 variables. The remaining constraints define the domain of the variables.

This model is valid for a general class of fault-tolerance mechanisms that are based in using two node
disjoint paths for each pair of demand nodes. In the network loading constraints(3) bpq = βtpq, wheretpq

is the total traffic demand betweens and t andβ is a percentage coefficient (β ∈ [0.5; 1]). The limits of
this interval correspond to two fault-tolerance mechanisms which are extreme in the network resources they
require:β = 1 models the 1+1 protection mechanism (the total demand is supported by each LSP);β = 0.5
models the 2-path diversity routing mechanism (each demand is equally split by the two LSPs and only half
of the demand is protected over single failures).

III - Two-Phase Heuristic
Additionally, as mentioned before, we derive an heuristic approach to our problem. Besides providing good
quality feasible solutions to the problem, the reasons for devising the heuristic are as follows: (i) the cost
value of the solutions obtained with the heuristic can be used as upper bound cutoffs to the algorithm solving
the ILP model for the whole problem (this can reduce significantly the solution computational times); (ii) the
heuristic can obtain solutions for problem instances that could not be solved to optimality by the mentioned
model, due to exaggerated computational times or memory failure.

In a nutshell, we first find the solution to the problem of determining the necessary core LSRs that
comply with the maximum hop survivability constraints (WDM constraints are already satisfied overG′).
The network loading constraints(3) are then taken into account in the second phase, which determines the
required quantity of lightpaths that accommodate the traffic flowing on each edge. On this phase, the original
graphG′ is significantly simplified by means of the solution provided on the first phase.

The two-phase heuristic is based on decomposing Hop-MCF into two simpler ILP models that are solved
one after the other. The first phase of the heuristic ignores the part of the problem that relates to lightpaths.
It focuses on finding locations for the core LSRs in order to guarantee that, for each pair of edge LSRs, there
are two node-disjoint paths satisfying the hop constraints. Thus, Phase 1 model is obtained by eliminating
constraints involving variablesue ((3) and(8)) in Hop-MCF, and considering as objective function the part
of the original function associated with the costs of core LSRs (lightpath costs are ignored).

The second phase of the heuristic considers the locations of core LSRs given by the optimal solution of
the previous phase (defined by the solution of variablesNi) as input parameters. This phase is concerned with
the determination of the required lightpaths. The output of Phase 1 guarantees that the problem for the second
phase has a feasible solution. We consider a restricted version ofG′, the networkG′′ = (S∪CR, E′′), where
CR denotes the set of core LSR locations obtained in the first phase. The set of edgesE′′ is a subset ofE′

corresponding to the edges that have both endpoints inS ∪CR. Note that since Phase 1 uses only the cost of
core LSRs, it can produce a set of locations that may not lead to the optimal solution of the whole problem,
to be obtained in Phase 2.

The second phase problem (presented next) is defined in the graphG′′ and is also modelled by an ILP.
The Phase 2 model is again a restricted version of Hop-MCF where the core LSR costs are ignored in the
objective function and the constraints involving variablesNi (constraints(4) and(7)) are eliminated. Note
that constraints(2.5) in this second phase model, equivalent to constraints(5) of the ILP model, are extended
to all nodes ofG′′ since all nodes in this graph are LSRs.
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Phase 2 model:

Minimize
∑

e∈E′′

ceue

subject to:∑
j∈(S∪CR)

w1pq
pj = 2 for all p, q ∈ S

∑
j∈(S∪CR)

w2pq
ij = w1pq

pi for all i ∈ (S ∪ CR) ; p, q ∈ S

(2.1)∑
j∈(S∪CR)

wh+1,pq
ij −

∑
m∈(S∪CR)

whpq
mi = 0 for all i 6= p;h = 2, ...,H − 1; p, q ∈ S

∑
j∈(S∪CR)

wHpq
jq = 2 for all p, q ∈ S

∑
h=1,...,H

whpq
ij +

∑
h=1,...,H

whpq
ji ≤ xe for all e = {i, j} ∈ E′′; p, q ∈ S (2.2)

∑
p,q∈S

bpq

 ∑
h=1,...,H

whpq
ij +

∑
h=1,...,H

whpq
ji

 ≤ αue for all e = {i, j} ∈ E′′ (2.3)

∑
i∈(S∪CR)

∑
h=1,...,H

whpq
ij ≤ 1 for all j ∈ (S ∪ CR) \{p, q}; p, q ∈ S (2.5)

xe ∈ {0, 1} for all e = {i, j} ∈ E′′ (2.6)

ue ≥ 0 and integer for alle ∈ E′′ (2.8)

whpq
ij , whpq

ji ∈ {0, 1, 2} for all e = {i, j} ∈ E′′;h = 1, ...,H; p, q ∈ S (2.9)

whpq
qq ∈ {0, 1, 2} for all h = 2, ...,H; p, q ∈ S (2.10)

IV - Computational Results
In the computational results, we have considered five different randomly generated Euclidean graphs. In
graphs 1, 2 and 3, we have considered 25 nodes (|V | = 25) randomly located in a square grid of 4000 by
4000 and in graphs 4 and 5, we have considered 50 nodes (|V | = 50) randomly located in a square grid of
5000 by 5000 (node locations were constrained to a minimum distance of 200 in all five graphs). A maximum
lightpath lengthL = 2000 was imposed, which resulted in a total number of 127, 129, 131, 407 and 427 edges
respectively (E′ sets). For each graph, some of the randomly generated nodes were selected as edge LSRs
(S set) and the remaining nodes were considered as core LSR candidate locations. We have considered the
selection of five edge LSRs (|S| = 5) in graphs 1 and 4 and ten edge LSRs (|S| = 10) in graphs 2, 3 and 5. In
graphs 1, 2, 4 and 5, all edge LSR nodes were selected as the most distant nodes from the Euclidean center of
the graph. In graph 3, two edge LSR nodes were considered around the Euclidean center of the graph and the
remaining eight were selected as the most distant nodes from the Euclidean center. In all problems, the cost
of putting a core LSR in operation isdi = 100, for all i ∈ V \S, and the cost of including an edgee = {i, j}
in the solution isce = (Euclidean distance betweeni andj)/100.

We have consideredH equal to 4 (maximum number of hops allowed between each pair of edge LSRs)
and two values ofβ (percentage of traffic to be protected), 50% and 100%. Moreover, we have considered
the capacity of lightpathsα = 1 and the traffic demandstpq, for all nodesp, q ∈ S, were randomly generated
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with an uniform distribution in the intervals]0; 0.1] and]0; 0.4]. Both the Hop-MCF model and the two-phase
heuristic models were solved through the branch-and-cut algorithm of CPLEX 7.0 software package with a
computational time set to a maximum of two days. The results were obtained on a Pentium III at 450Mhz
with 128Mb of RAM. The valueH = 3 was found not feasible for most of the cases and the valueH = 7
was found to be almost equivalent to the case with no hop constraints.

Table I - Two-phase heuristic computational results

tpq ∈]0; 0.1] tpq ∈]0; 0.4]
test|V | |S| |E| |E′| Ph1 OPT β Ph2 OPT Ph1+Ph2 loss Ph2 OPT Ph1+Ph2 loss

16,17 64,71
50% 0,06 207 907 0,65 207 907

LR value 700 0,38 0,23
1 25 5 50 127 LR cpu 0,2 700 0,0% 0,0%

opt cpu 0,32 32,35 129,42
100% 0,04 207 907 0,04 207 907

0,07 0,07
96,1 384,4

50% 0,26 332 932 0,43 509 1109
LR value 600 21,59 68,05

2 25 10 50 129 LR cpu 0,97600 0,3% 33,8%
opt cpu 2,22 192,2 768,8

100% 0,26 335 935 0,26 884 1484
29,48 58090,4
73,01 292,04

50% 0,34 253 953 0,35 384 1084
LR value 700 159,9 37966,4

3 25 8+2 50 131 LR cpu 0,99700 0,5% 35,0%
opt cpu 2,28 146,02 584,08

100% 0,34 258 958 0,34 763* 1463
240,24 2 days

l.b.=662,68
18,5 74,01

50% 0,06 330 1430 0,06 330 1430
LR value 1100 0,32 3,3

4 50 5 100 407 LR cpu 0,511100 0,0% 0,0%
opt cpu 0,92 37,008 148,03

100% 0,06 330 1430 0,07 330 1430
0,43 2,39
82,91 331,67

50% 0,28 439 1339 0,28 468 1368
LR value 900 8,75 18,34

5 50 10 100 427 LR cpu 10,64900 0,0% 26,8%
opt cpu 8,62 165,83 663,34

100% 0,28 439 1339 0,28 835 1735
10,85 301,37

Table I presents the computational results obtained with the two-phase heuristic. For each problem
instance, the table presents the linear programming relaxation (LR) bound, the cpu time to determine the LR
bound and the cpu time to determine the optimal solution (both in seconds), for both phases of the proposed
heuristic. The "OPT" columns show the costs of the optimal solutions for each phase (note that Phase 1 model
is common for the two different demand matrices). Columns "Ph1 + Ph2" show the costs of the solutions
obtained heuristically. The "loss" columns contain the cost increase when consideringβ = 100% instead of
50%, that is, when twice as much demand is protected.

Table II presents the computational results obtained with the Hop-MCF model, where the values of the
two-phase heuristic ("Ph1 + Ph2" values of Table I) were set-up as upper bounds on the branch-and-cut
algorithm. Columns "gap" present the assessment (in percentage) of the heuristic costs when compared to the
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optimal values of Hop-MCF or the best lower bound when the optimal value was not found within the two
days.

Table II - Hop-MCF computational results

tpq ∈]0; 0.1] tpq ∈]0; 0.4]
test |V | |S| |E| |E′| β Ph1+Ph2 Hop-MCF OPT gap Ph1+Ph2 Hop-MCF OPT gap

715,73 762,92
50% 907 0,26 904 0,33% 907 0,29 904 0,33%

37,45 31,47
1 25 5 50 127

731,46 825,84
100% 907 0,26 904 0,33% 907 0,22 904 0,33%

18,87 26,11
691,81 967,27

50% 932 2,65 910 2,42% 1109 1,97 ? 5,26%
40203,1 2 days

l.b.=1053,57
2 25 10 50 129

783,63 1334,54
100% 935 1,94 928 0,75% 1484 1,94 ? 6,24%

59501,6 2 days
l.b.=1396,89

769,68 978,75
50% 953 1,22 ? 1,34% 1084 1,24 ? 3,27%

2 days 2 days
l.b.=940,39 l.b.=1053,57

3 25 8+2 50 131
839,37 1257,51

100% 958 1,24 ? 0,73% 1463 1,29 ? 11,19%
2 days 2 days

l.b.=951,06 l.b.=1396,89
1117,81 1171,26

50% 1430 0,67 1410 1,42% 1430 0,66 1410 1,42%
217,19 139,99

4 50 5 100 407
1135,63 1242,53

100% 1430 0,67 1410 1,42% 1430 0,65 1410 1,42%
206,58 248,45
982,45 1229,82

50% 1339 7,84 1339* 5,19% 1368 7,4 ? 3,65%
2 days 2 days

l.b.=1272,92 l.b.=1319,86
5 50 10 100 427

1064,91 1559,64
100% 1339 7,58 1338* 5,7% 1735 7,36 ? 6,86%

2 days 2 days
l.b.=1266,77 l.b.=1623,55

In the two-phase heuristic (results shown in Table I), it is clear that Phase 1 model is much easier to solve
then Phase 2 model. Moreover, the instances become harder to solve for larger demand values. There is even
one case (instance 3) for which the Phase 2 optimal solution was not found within two days (in this case, the
OPT column indicates the cost of the best solution found and the best lower bound is also included in the
table). Note that in this instance, two edge routers are located around the Euclidian centre, broadening the
feasible solution space and, therefore, making the problem instance much harder to be solved.

By increasingβ, the problems become also slightly harder to solve. For the smaller demand values,
the cost increase ("loss" column) is 0,5% at most. Under the perspective of network operators, this is quite
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interesting as it is possible to offer a better service with an additional small cost, if any. For the larger
demand values, cost penalties are null in the cases with fewer number of demands but can be as high as 35%.
Nevertheless, this result is yet significant since in theβ = 100% case, the network has a 35% cost increase
to support 100% more demand than in theβ = 50% case.

Table II results show that the proposed two-phase heuristic yields good quality feasible solutions in
dramatically lower cpu time then those obtained with the Hop-MCF. Note that in many cases, Hop-MCF
could not obtain the optimal solution. The "gap" column values show that (i) in the cases where Hop-MCF
has obtained the optimal solution, the heuristic solutions are at most 2.42% (in the worst case) above the
optimal value; (ii) in the cases where Hop-MCF did not yield the optimal solution, the reported lower bounds
show that the solutions of the heuristic are at most (in the worst case) 11.2% above the optimal value (note
that in these cases the quality of the solutions may be better than suggested by the gap values).

Finally, the influence of the demand values and theβ value in the Hop-MCF solution times is similar to
the two-phase heuristic case: the instances become harder to solve for larger demand values and for a larger
β value.
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