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Abstract. In this paper, we address the combined resource allocation and protocol parameter 
assignment problem of Ethernet networks using IEEE 802.1S Multiple Spanning Tree Protocol (MSTP). 
MSTP enables (i) the definition of multiple network regions, where a Common Spanning Tree is set up 
between all switches, (ii) the set up of additional Spanning Trees inside each region and (iii) the 
assignment of each traffic VLAN to a different Spanning Tree. We propose an algorithm to compute the 
appropriate MSTP parameters aiming to optimize the network load balance and minimize service 
disruption, and show its efficiency through computational results. We study the relationship between load 
balance and service disruption under single link failures when either a single region or different regions 
are adopted and for different number of additional Spanning Trees. We show that the single region 
approach is always better when MSTP is optimally configured and that a very small number of Spanning 
Trees can obtain near optimal solutions, thus, not penalizing the switching processing overhead. 

1 INTRODUCTION 

Current Ethernet switches are compliant with IEEE 802.1D and IEEE 802.1Q protocols. The 802.1D 
Spanning Tree Protocol (STP) sets the routing paths between any pair of switches based on a logical set 
of links spanning all switches without cycles, i.e., a Spanning Tree (ST). It includes detection of network 
topology changes and recalculation of the ST to reacquire global connectivity. In a network with n 
switches interconnected by l point-to-point links (l > n – 1), there are n–1 active links and the remaining 
ones act as backup links. On the other end, 802.1Q VLAN Protocol enables the definition of different 
VLANs, therefore creating different broadcast domains within the same switching nodes. A VLAN is a 
set of ports, belonging to the same or to different switches, with full connectivity between each other. 
Traffic demands of different clients are supported on different VLANs to prevent packets from one client 
to reach ports of others, thus optimizing network resources and preventing Layer 2 security attacks. 

STP was proposed years ago when recovering connectivity after a network failure within a minute 
was considered adequate performance. Recently, two new protocols were proposed by IEEE to enhance 
the survivability and the traffic engineering capabilities of switching networks. One of these protocols is 
the IEEE 802.1W Rapid Spanning Tree Protocol (RSTP), an evolution of STP where the port states and 
roles are redefined and a negotiation mechanism is used in order to accelerate the convergence of the ST 
whenever the network topology changes. The other protocol is the IEEE 802.1S Multiple Spanning Tree 
Protocol (MSTP) [1] which makes use of both RSTP and VLAN protocols. With MSTP, a network 
operator can define different network regions where a Common Spanning Tree (CST) connecting all 
switches of all regions is set-up in such a way that a topology change inside a region does not change the 
CST outside the region. MSTP also enables additional STs to be configured inside each region. 

In this paper, we address the following problem. Given (a) a network composed by a set of switches 
connected through point-to-point links, (b) a set of regions defined on the network and (c) a set of 
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VLANs, each one defined by a set of traffic flows that are to be supported by the network, we determine 
(i) the appropriate MSTP parameters implementing the CST and the required additional STs inside each 
region and (ii) the assignment of each traffic VLAN to one of the STs. The aim is to optimize the 
network load balance and to minimize service disruption. As will be shown later, for any desired set of 
STs, it is always possible to determine a set of MSTP parameters that makes active its links. This fact 
enables the separation of the problem in two distinct stages. In a first stage, the set of desired STs is 
determined applying a GRASP (Greedy Randomized Adaptive Search Procedure) based optimization 
algorithm. In a second stage, a MSTP parameter assignment algorithm is proposed that computes the 
appropriate protocol parameters minimizing the service disruption for single link failures. 

MSTP does not define how networks should be divided in regions, which Spanning Trees should be 
created on each region and how VLANs should be assigned to each Spanning Tree. One possibility is to 
consider the whole network as a single region. The motivation for the multiple regions is twofold: (i) the 
inter-working between MSTP enabled networks and non MSTP enabled networks is possible since 
switches outside regions do not need to support MSTP and, (ii) the STs reconfiguration due to topology 
changes inside a region is administratively confined to that region (limiting network operational 
instability). This second reason might let us conclude that multiple regions provide lower service 
disruption than a single region. However, since inter-region VLANs can be supported by a single ST 
between regions, it limits the amount of load balancing that can be obtained with multiple regions. 
Moreover, the use of multiple STs in the single region case also improves service disruption because the 
STs not using a failed link are not reconfigured and, therefore, their supported traffic does not suffer 
service disruption. We will show through the computational results that the single region approach is 
always better not only in network load balance (the obvious result) but also in service disruption (the 
non-obvious results) provided that MSTP is optimally configured. We will also show that in both cases 
(single region and multiple regions) a very small number of STs can obtain near optimal solutions, thus, 
not penalizing significantly the switching processing overhead. 

Recently, we have addressed the load balance optimization problem in [2]. In that work, thought, the 
proposed optimization algorithm is less efficient than the one presented here and the impact of link 
failures on service disruption was not addressed. The use of MSTP as a means to enhance traffic 
engineering capabilities of Ethernet network has been addressed by other authors [3-5] in recent years. 
Nevertheless, these works address other issues and traffic engineering objectives. In [6], the authors 
address the problem of how to divide the network into regions. Other works propose MSTP as a means to 
improve the support to other important aspects like mobility [7] and QoS [8]. 

This paper is organized as follows. Section 2 reviews the MSTP protocol and, in particular, how the 
different ST instances are configured. In Section 3, we propose the MSTP parameter assignment 
algorithm that computes the appropriate protocol parameters implementing any desired STs minimizing 
at the same time the service disruption for single link failure. Section 4 presents a GRASP based 
optimization algorithm for the determination of the set of STs that optimize network load balance. In 
Section 5, a selected set of computational results is presented and discussed. 

2 MSTP PROTOCOL 

In this section, we review MSTP and, in particular, how the different ST instances are configured. Let 
us focus first on the configuration of the additional STs inside each region. MSTP configures each ST 
(i.e., each set of active links) in the same way as STP, which is based on two types of positive integer 
parameters: a BridgeID assigned to each switch and a PortCost assigned to each port of each switch. 
These parameters can be administratively configured and, for each ST, different sets of BridgeID values 
and PortCost values are to be configured. 

Consider the example (Figure 1) of a single region for one additional ST (the thick lines represent the 
active links forming the ST). First, the switch with the lowest BridgeID becomes the Root Bridge (the 
BridgeID includes the switch MAC address which guarantees that all BridgeID values are different), 
which is switch D. Then, the active links are the ones that belong to the minimum cost paths from each 
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switch to the Root Bridge. The cost of a path is the sum of the PortCost values of all forwarding ports 
towards the Root Bridge (designated as Root Ports). In the example, the minimum cost path from switch 
A to the Root Bridge is A-B-D with a path cost of 20 and, therefore, links {A,B} and {B,D} become 
active links (the Root Port of switch A is the port that connect it to switch B). In the example, there are 
two minimum cost paths from switch E to the Root Bridge (E-D and E-B-D) both with a path cost of 20. 
When a switch has multiple minimum cost paths to the Root Bridge, the switch chooses the one whose 
next switch has the lowest BridgeID. Therefore, in the case of switch E, the first path is chosen. Note that 
the set of active links defines a unique routing path between any pair of switches and the traffic flows of 
all VLANs assigned to this ST are routed through these unique paths. 
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Figure 1: Spanning Tree resulting from the given sets of BridgeID and PortCost values. 

 
The non-active links are used as backup links, i.e., links that can become active when the current 

active links fail. Figure 2 shows the new ST that is configured if link {B,D} fails. Once again, the new 
ST is the set of links in the minimum cost paths from each switch to the Root Bridge. 
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Figure 2: Spanning Tree after the failure of link {B,D}. 
 
The comparison between Figures 1 and 2 shows that, in the case of link {B,D} failure, there is only 

one routing path that does not change (the one between switches D and E). All traffic demands whose 
routing paths change suffer temporary service disruption. In this case, most of the routing paths have 
changed and, therefore, most of the traffic suffers temporary service disruption. Service disruption can be 
minimized if whenever there is a failure, all active links prior to the failure remain active after the failure. 
Figure 3 shows the same example where we have changed two Port Cost values (with a circle around) 
and the resulting ST after the failure of link {B,D}. In this case, it is possible to verify that the failure has 
activated link {B,E} and all other previous active links remain active after the failure (it is 
straightforward to verify that the service disruption is minimum for all other single link failure cases). 

Let us now focus on the configuration of the CST. The administrator defines a set of network regions. 
The switch with the lowest BridgeID becomes the CST Root Bridge. The part of CST outside the regions 
is configured in a similar way as described before considering each region as a single switch: the active 
links outside regions are the ones that belong to the minimum cost paths from each switch to the CST 
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Root Bridge considering that all Port Cost values of links internal to regions are NULL. The switch inside 
each region whose Root Port belongs to a link outside the region becomes the CST Regional Root Bridge 
(if the CST Root Bridge belongs to a region, it is its CST Regional Root Bridge). Inside each region, the 
active links are the ones that belong to the minimum cost paths from each region switch to the CST 
Regional Root Bridge.  

 

 
 (a) (b) 

Figure 3: Spanning Tree with two updated PortCost values. 
 
Figure 4 illustrates this architecture with 3 regions: the CST Root Bridge belongs to region 2 and the 

CST is given by the thick lines (in the general case, the CST Root Bridge can also be a switch outside 
any region). At regions 1 and 3, the CST Regional Root Bridges are the ones that are closer in the routing 
paths towards the CST Root Bridge. Note that by the method that MSTP uses to determine the CST, its 
set of links has the in-region spanning tree property, i.e., it forms also a spanning tree inside each region. 
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Figure 4: Common Spanning Tree (CST), Root Bridge and Regional Root Bridges. 

 
The reconfiguration of the CST depends on where the link failures occur. Failures inside a region will 

not affect the CST outside the region and will not change its CST Regional Root Bridge. Failures outside 
regions change the CST between regions and can also change the CST inside each region because the 
CST Regional Root Bridges might change. Nevertheless, the minimum service disruption property can be 
observed if a set of PortCost values can guarantee that two conditions. In a failure inside region r: (i) a 
new link of region r is activated and (ii) all links of region r that were active before the failure remain 
active after the failure. In a failure outside regions: (i) a new link outside regions is activated, (ii) all links 
outside regions that were active before the failure remain active after the failure and (iii) the active links 
inside all regions do not change even if the CST Regional Root Bridge changes.  



Amaro F. de Sousa and Gil A. S. Soares 

 

3 PortCost VALUES ASSIGNMENT 

In previous section, we have reviewed how STs are configured based on the sets of BridgeID and 
PortCost values. In this section, we deal with the opposite operation, i.e., how to assign the MST 
parameters in order to obtain a given set of desired STs. Since we can use a different set of parameters to 
define each ST, the parameter assignment operation can be applied to each ST individually. Assume that 
the Ethernet switches have some current BridgeID and PortCost values. The assignment algorithms 
proposed here update the current PortCost values without any change in the current BridgeID values. 

Consider the example of Figure 5(a) where a desired ST is defined (with thick lines) over a network 
of Ethernet switches. Assume that switch R is the Root Bridge (the one that has the lowest BridgeID 
value) and that all current PortCost values are 1. 
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E F
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Figure 5: (a) A ST defined on a Ethernet switched network. (b) PortCost values assigned at first stage. 
 
In the first step, we start by fixing the current PortCost values of the links belonging to the desired 

ST. Then, we calculate the cost ci of the paths from every switch i to the Root Bridge in the desired ST 
and the cost cij of the routing path from every switch i to every switch j in the desired ST. In the example 
of Figure 6, cD is 4, cC is 3 and cDC is 3. Let {i,j} represent the link between switches i and j and pij 
represent the PortCost value of the port of switch i used on link {i,j}. In order to guarantee the desired 
ST, the minimum PortCost values that must be assigned to each link {i,j} not belonging to the desired ST 
are pij = ci –  cj + 1 and pji = cj –  ci + 1. However, any other higher value can be assigned and, in general, 
these minimum values do not guarantee the minimum service disruption property. 

A failure on an active link divides the current ST in two STs. The ST that contains the Root Bridge, 
which we designate by STR, does not change because the minimum cost paths remain the same. The aim 
is that the active links of the other ST, which we designate by STB, remain active and that one of the 
backup links connecting the two STs becomes active. For a failure of a particular active link {a,b}, let us 
partition the backup links in two sets: set B{ab} with the backup links connecting a switch of STR to a 
switch of STB and set B{ab} with the remaining backup links. In Figure 6, B{ab} = {{A,D},{E,F}}. 

In order to guarantee that the backup links {i,j} ∈ B{ab} do not become active, the minimum PortCost 
values of their ports must be pij = cij + 1 and pji = cji + 1. With these minimum values we guarantee that 
the routing path on the desired ST between switches i and j has always a lower cost than the path 
provided by link {i,j} ∈ B{ab}. In Figure 5(a), cGD and cDG are both equal to 2 and , if pGD ≥ 3 and pDG ≥ 
3, we guarantee that the backup link {D,G} will never become active provided that there is no failure in 
{B,D} or {B,G}. In a first stage, all non-active links whose current PortCost values are lower than cij + 1 
are assigned with this value. In the following stages, these values can only be increased, which guarantee 
that the backup links {i,j} ∈ B{ab} do not become active, whatever the active link {a,b} fails. 

Figure 5(b) shows the assigned PortCost values for all non-active links at this first stage. It is easy to 
see that this PortCost assignment does not yet guarantee the minimum service disruption property. If link 
{A,B} fails, the minimum cost path from switch F to the Root Bridge is F-E-R with cost 5 and the 
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minimum cost path from switch D to the Root Bridge is D-A-E-R with cost 5. Therefore, both links 
{E,F} and {A,D} become active and some of the active links {B,F}, {B,D} or {B,G} become backup. 

To guarantee the minimum service disruption property for a failure of an active link {a,b}, we have 
to guarantee that the minimum cost paths of all switches belonging to STB will be through one single 
backup link {i,j} ∈ B{ab}. First, we select one of these backup links. Then, (i) we fix the current PortCost 
values of the selected backup link, (ii) we determine for each of the other backup links {i,j} ∈ B{ab} the 
costs δi and δj of the routing path from switches i and j to the Root Bridge in the desired backup ST and 
(iii) we increase the PortCost values of each of the other backup links {i,j} ∈ B{ab} to the values pij = δi – 
δj + 1 and pji = δj – δi + 1 if their current values are lower. These are the minimum values that guarantee 
that the path of each switch of STB to the Root Bridge has always a lower cost through the selected 
backup link than to any other possible backup link. In Figure 5(b), if we select link {A,D} to become 
active when link {A,B} fails, the other backup link is {E,F}. In the backup ST (composed by all active 
links with {A,D} and without {A,B}), δE is equal to 1 (the cost of the path E-R) and δF is equal to 7 (the 
cost of the path F-B-D-A-E-R). Since the current PortCost values of link {E,F} are 4, the PortCost value 
pEF remains unchanged (4>1–7+1) and the PortCost value pFE is increased to 7–1+1 = 7 to ensure the 
minimum service disruption property for the failure of link {A,B}. 

Finally, we must ensure the minimum service disruption property for the single link failure of all 
active links. Note that for a particular failure of an active link {a,b}, we select one backup link {i,j} ∈ 
B{ab} and start by fixing its two PortCost values. Therefore, when we proceed to the failures of other 
active links, we must ensure that the PortCost values of the previously selected backup links are not 
required to be increased. This is guaranteed if, whenever we select a backup link for a particular failure, 
we select it also for all other active links that can be recovered by it. In the example of Figure 5(b), if link 
{A,D} is selected to recover from failure of link {A,B}, it is also selected to recover from failure of link 
{B,D}, since {A,D} also belongs to B{BD}. The algorithm for assigning the PortCost values that 
guarantees the minimum service disruption property for each additional ST on each region is now 
straightforward (consider ρ the Root Bridge, pij the current PortCost value of the port of switch i used on 
link {i,j}, and V , L and X three sets of links): 

 
1. Keep PortCost values pij of all desired active links unchanged 
2. For each backup link {i,j}: 

2.1. Determine the costs cij and cij of the routing paths on the desired active links 
2.2. Do  pij = max[pij , cij +1]   and   pji = max[pji , cji +1] 

3. Make V = {} and L = {} 
4. While (V does not contain all desired active links) do: 

4.1. Select one backup link {y,z} ∉ L 
4.2. Add link {y,z} to set L 
4.2. Compute X = {all desired active links {a,b} ∉ V, such that link {y,z} ∈ B{ab}} 
4.2. For each link {a,b} ∈ X do: 

4.2.1. Add link {a,b} to set V 
4.2.2. For all backup links {i,j} ∈ B{ab} except {y,z} do: 

4.2.2.1. Determine the costs δi and δj of the routing path from switches i and j to ρ in the 
desired backup ST 

 4.2.2.2. Do  pij = max[pij , δi – δj +1]   and    pji = max[pji , δj – δi +1] 
 
For the CST, we use the previous algorithm as a building block to define an appropriate algorithm. 

We assign the PortCost values to the part of CST between regions in the following way: first, we reduce 
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each region in the complete network topology to a representative single switch (assigned with the lowest 
BridgeID value among all switches of the region); then, we assign ρ to the switch with the lowest 
BridgeID value and run the previous algorithm on the reduced topology. We assign the PortCost values 
to the part of CST inside each region in the following way: first, we assign ρ to the CST Regional Root 
Bridge (if the region includes the CST Root Bridge, it is by definition its CST Regional Root Bridge); 
then, we run the previous algorithm on the region network topology. Note that the previous algorithm still 
guarantees the desired ST inside each region even if ρ is different than the considered switch. Therefore, 
if a failure occurs in a link between regions, the solution given by the algorithm for each region will 
ensure that its part of the CST will remain the same, even if its CST Regional Root Bridge changes. 

4 OPTIMIZATION ALGORITM 

Consider an Ethernet network represented by a directed graph G = (N,A) where N is the set of 
switches and A is the set of directions (i,j) of all links (E is the set of links {i,j}). The capacity of link 
{i,j} is b{i,j}. Consider R regions defined on the network, each one identified with a positive number r 
between 1 and R. Each region is defined by the sub-graph Gr = (Nr,Ar) where Nr ⊂ N is the set of 
switches and Ar ⊂ A the set of direction of links belonging to region r. The network supports a set of 
VLANs represented by V. Each VLAN v ∈ V is characterized by a set of traffic flows T(v) and each 
traffic flow t ∈ T(v) is characterized by its origin switch o(t), destination switch d(t) and demand b(t). 

For a particular set of STs and a particular mapping of VLANs to STs, each traffic flow is routed 
through the routing path defined in the STs that its VLAN was assigned to. Assume that a(v) indicates the 
ST assigned to VLAN v. Assume a binary parameter s[(i,j), t] that is one if arc (i,j) is in the path of traffic 
flow t ∈ T(v) defined by the ST a(v). The load on arc (i,j) is the sum of the demands of all traffic flows 
that use it. Consider l(i,j) the resulting load (in percentage): 
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The aim is the lexicographical minimization of the link loads. We define the load array L of a 
particular solution, the array which is formed by all l(i,j) values given by (1) and sorted in a non 
increasing order. Given two solutions 1 and 2 whose load arrays are L1 e L2, solution 1 is better than 
solution 2 if L1 has a smaller value than L1 in the first array position whose values are different. The aim 
is to select the solution whose worst load is better; if the worst load is equal, the one whose second worst 
load is better; and so on… Maximizing the unused resources of the worst load links maximizes the 
network robustness to unpredicted demand growth and minimizes the amount of traffic that suffers 
service disruption when a single link fails. 

The proposed algorithm is based on a GRASP (Greedy Randomized Adaptive Search Procedure) 
with a local search technique at each GRASP iteration. In the following description, Ω is a set of STs 
(one CST and n additional STs at each region) and Φ is an assignment array defined by a set in the form 
a(1…|V|), where the element a(v) indicates the ST assigned to VLAN v. A solution S is defined by a set 
of STs and an assignment array: S = {Ω,Φ).  The set Neighbors(S) is the set of all neighbor solutions of S 
defined as follows: S’ = {Ω’, Φ’} is a neighbor of S if either it has the same set of STs (Ω’ equal to Ω) 
and its assignment array Φ’ differs from Φ in a single value or it has the same assignment array (Φ’ equal 
to Φ) and its set of STs Ω’ differ from Ω on a single link of a single ST. Considering Sbest as the best 
solution found so far and Lbest its load array, the proposed algorithm is then: 

 
1: Set all values of Lbest to +∞ 
2: while [Computing time is lower than MaxTime] do: 
3:  Determine S by generating randomly a set of STs Ω and an assignment array Φ 
4:  Compute the load array L of solution S 
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5:  repeat 
6:   S’ ← S 
7:   for [S’’ ∈ Neighbors(S’)] do: 
8:    Compute the load array L’’ of solution S’’ 
9:    if [L’’ is better than L] then:  S ← S’’ , L ← L’’ 
10:  until [S’ equal to S] 
11:  if  [L is better than Lbest] then:   Lbest ← L , Sbest ← S 

 
In step 1, we start by setting all elements of Lbest to +∞ since there is no solution found yet. The while 

cycle (steps 2 to 11) is the GRASP main cycle and it runs until a maximum computing time (given by 
MaxTime) is reached. Inside the while cycle, first, a solution S is randomly generated (step 3) and its load 
array L is computed (step 4). Then, the repeat cycle (steps 5 to 10) implements the local search 
procedure: all neighbors of the present solution are computed (for cycle in steps 7 to 9) and, whenever a 
neighbor solution is better than the present one (step 9), it is stored as the present solution; the local 
search stops if there is no better neighbor solution (step 10). Finally, the present solution is stored as the 
best solution if it is better than the previously found best solution (step 11).  

In step 3, a set of STs Ω is randomly generated (remember that this set is the CST and n additional 
STs for each region). We generate each additional ST on each region r as follows. First, we assign all 
nodes of Nr with a different label. Then, we repeat | Nr | – 1 times the following operations: (i) select 
randomly one link of Ar among all links whose end-nodes have different labels and (ii) choose the label 
of one end-node (of the selected link) and assign it to all nodes of Nr with the label of the other end-node. 
At the end, all nodes have a single assigned label and the selected links form a ST over all nodes of 
region r. Concerning the random generation of the CST, in order to agree with MSTP, its set of links 
must be an in-region Spanning Tree (as explained in Section 2), i.e., it should form a ST on each sub-
graph Gr. In order to guarantee this property, we generate a random CST using the same algorithm (as 
described before) applied to all nodes of N with the following adaptation: the algorithm starts by 
selecting links among the ones that belong to regions and, when all these links have the same label on 
their end-nodes, the algorithm proceeds selecting links not belonging to any region. In this way, we 
guarantee that all nodes inside each region are fully connected before the links outside regions start to be 
selected and, therefore, we guarantee the in-region property. 

5 COMPUTATIONAL RESULTS 

We have solved different random generated problem instances with the proposed algorithms. The 
case studies presented here consider the network shown in Figure 6, an Ethernet network with 23 nodes, 
42 links (all links with a capacity of 1 Gbps) and 3 defined regions. Switches A to D, H to K and O to R 
are access switches where customer equipment is connected to and switches V and W are gateway 
switches that connect the network to other core networks. Concerning traffic demands, we have 
considered 51 VLANs (each VLAN with 2 traffic flows) randomly selected between all access switch 
pairs and all access-gateway pairs. Demand values were randomly selected among 4 different values (10, 
20 50 and 100 Mbps) considering three different case studies: the percentage of total demand internal to 
regions is 20% for case study A, 50% for case study B and 80% for case study C. 

All case studies were solved by the optimization algorithm proposed in Section 4 and, then, the 
obtained ST solutions were used to assign the appropriate MSTP parameters using the PortCost 
assignment algorithm presented in Section 3. The proposed algorithms were implemented in C 
programming language and were run in a PC with a 3.0 GHz Pentium 4 processor and 512 MB of RAM 
memory. The executable code runs on Windows OS and is available at [9]. In the following sub-sections, 
we make a separate analysis of the computational results in three different aspects. 
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Figure 6: Topology of the Ethernet network used on the case studies. 

 

5.1 Network Load Balance Analysis 
We have solved all three case studies assuming a maximum number n of additional STs inside each 

region equal to 0, 1 and 2. Table 1 shows the 8 worst link load values of each obtained solution. These 
results show that one additional ST obtains: (i) a significant load balance improvement for case study C 
where traffic is mainly internal to regions (worst link loads decreased from 41% to 29%), (ii) a small load 
balance improvement for case study B (worst link loads decreased from 55% to 51%) and (iii) no 
significant improvement for case study A. These results show that adopting multiple regions limits the 
amount of load balance that can be obtained with additional STs. Significant load balance gains are 
obtained only in network scenarios with highly clustered traffic matrices provided that the adopted 
regions reflect the traffic clustering. 

Table 1: Results of the case studies based on 3 regions. 

  Index of first 8 positions of Load Array (%) 
Case Study n 1 2 3 4 5 6 7 8 

0 76.0 76.0 70.0 70.0 68.0 68.0 58.0 58.0 
1 76.0 76.0 68.0 68.0 59.0 59.0 58.0 58.0 A 
2 76.0 76.0 68.0 68.0 59.0 59.0 58.0 58.0 
0 55.0 55.0 51.0 51.0 49.0 49.0 46.0 46.0 
1 51.0 51.0 49.0 49.0 43.0 43.0 36.0 36.0 B 
2 51.0 51.0 49.0 49.0 43.0 43.0 36.0 36.0 
0 41.0 41.0 39.0 39.0 34.0 34.0 32.0 32.0 
1 29.0 29.0 22.0 22.0 21.0 21.0 21.0 21.0 C 
2 29.0 29.0 21.0 21.0 21.0 21.0 20.0 20.0 

Table 2: Results of the case studies based on 1 region. 

  Index of first 8 positions of Load Array (%) 
Case Study n 1 2 3 4 5 6 7 8 

0 70.0 70.0 68.0 68.0 59.0 59.0 58.0 58.0 
1 31.0 31.0 31.0 31.0 30.0 30.0 26.0 26.0 A 
2 31.0 31.0 31.0 31.0 30.0 30.0 26.0 26.0 
0 55.0 55.0 51.0 51.0 46.0 46.0 43.0 43.0 
1 23.0 23.0 23.0 23.0 21.0 21.0 20.0 20.0 B 
2 23.0 23.0 23.0 23.0 20.0 20.0 20.0 20.0 
0 41.0 41.0 39.0 39.0 34.0 34.0 32.0 32.0 
1 21.0 21.0 20.0 20.0 20.0 20.0 19.0 19.0 C 
2 21.0 21.0 20.0 20.0 20.0 20.0 19.0 19.0 
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We have also considered the same three case studies but assuming the whole network as a single 
region. The 8 worst link load values of each obtained solution are presented in Table 2. These results 
show that one additional ST obtains a significant load balance improvement for all case studies (worst 
link loads decreased from 70% to 31% in case study A, from 50% to 23% in case study B and from 41% 
to 21% in case study C). Comparing both tables, we observe than in all cases the single region case is 
better. This difference is very large in case studies A and B and it is only small in case study C since it is 
the case where traffic is mainly internal to regions and, as observed before, the additional ST was 
efficient in improving the load balance. Moreover, two additional STs do not provide significant better 
performance than one additional ST, which means that near optimal load balance is obtained with one 
single additional ST, thus, not penalizing significantly the switching processing overhead. 

5.2 Service Disruption Analysis 
We have performed a service disruption analysis of all best solutions with the MSTP parameters 

assigned by the algorithm of Section 3. For each solution and for each link that is used by at least one ST, 
we have computed (i) the new STs when this link fails, (ii) the traffic flows whose routing paths are 
changed in the new STs, (iii) the sum of the demands of such flows and (iv) the percentage of the total 
traffic that suffer service disruption. Then, we have determined (a) the average of all traffic percentages 
for all links that are used by at least one ST and (b) the percentage of all traffic demand that suffers 
service disruption in the worst case link failure (Table 3). 

Table 3: Service disruption results. 

  Average service disruption Worst case service disruption 
Case Study n 3 regions 1 region 3 regions 1 region 

0 16.64 16.69 37.81 34.83 
1 9.59 9.29 37.81 15.42 A 
2 9.59 8.34 37.81 15.42 
0 16.19 16.51 27.36 27.36 
1 8.90 7.72 25.37 11.44 B 
2 8.42 7.52 25,4 11.44 
0 13.25 13.25 20.40 20.40 
1 7.89 6.72 14.43 10.45 C 
2 7.60 6.81 14.43 10.45 

 
In both average and worst case analysis, the results show one important observation. The single 

regions approach is always better when additional STs are considered (even in case study C where traffic 
is mainly internal to regions). This might seem unexpected since the multiple region scenarios guarantee 
that link failures inside a region do not change the STs outside that region. Nevertheless, the better 
network load balance and the proposed MSTP parameter assignment algorithm, that minimizes the 
number of links changing their state when a failure occurs, results in better service disruption by the 
single region approach. Moreover, two additional STs do not provide significant better service disruption 
than one additional ST, which means that, like in the previous analysis, near optimal solutions are 
obtained with one single additional ST, thus, not penalizing significantly the switching processing 
overhead. 

5.3 Algorithms Performance Analysis 
The MSTP parameter assignment algorithm proposed in Section 3 has a polynomial complexity 

relative to both the number of switches and number of links and, therefore, it runs with very low 
computational times (below a tenth of a second). Concerning the efficiency of the optimization algorithm 
proposed in Section 4, we have run the algorithm in all cases with MaxTime equal to 30 minutes. In 
practice, a solution that minimizes a small number of the worst load values (lets say the 6 worst load 
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values) is enough since the remaining values become small. With this criterion, a lot less computing time 
is required. The proposed algorithm is a stochastic process, which means that different runs might give 
different results. We have run 5 times all cases presented here and in all runs, a solution equal to the best 
solution in the 6 worst load values was always found below 2 minutes of computing time for the cases 
with 1 and 2 additional STs (the cases without additional STs are much easier to solve). These times 
make us confident that the obtained results are indeed optimal for the 6 worst case load values (further 
work is required to obtain theoretical bounds that can be used to prove near optimality of the solutions). 

6 CONCLUSIONS 

In this paper, we have addressed the problem of how to use the IEEE 802.1S MSTP to improve load 
balance and service disruption in Ethernet networks. We have proposed an MSTP parameter assignment 
algorithm that implements any desired set of STs minimizing the number of links changing their state 
between active and backup when a single link failure occurs (the so-called minimum service disruption 
property). We have also proposed an optimization algorithm to determine the set of STs that optimize 
network load balance and service disruption. The computational results show that the combination of the 
two algorithms is very efficient and able to obtain good solutions within very short computing times. The 
MSTP parameter assignment algorithm (presented in Section 3) is an important result by itself since it 
enables the determination of the appropriate MSTP parameters for other sets of STs that might be 
computed by any other methodology, possibly addressing other optimization objectives. We have studied 
the relationship between load balance and service disruption under single link failures when either a 
single region or multiple regions scenarios are adopted. We showed that the single region approach is 
always better when MSTP is optimally configured and that a very few number of additional Spanning 
Trees can obtain near optimal solutions. Note that due to length limit, we have presented only part of a 
much larger set of case studies. Nevertheless, the conclusions drawn by the presented results also stand 
on all other computational results. 
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