All-Optical Wavelength Conversion in Ultra-High Speed Optical Communication Systems

> Paulo Almeida Instituto de Telecomunicações

Wavelength Conversion in the Optical Communication Systems

- All Optical Cross-Connects (OXCs):
 - **4**Wavelength routing networks
 - **4**Simplify the OXC's architecture
 - Increase the number of light paths between two end points
 - 4 Avoids communication's fail due to the wavelength collision
 - #Independent wavelengths' management in subnetworks
- **4** Multi-wavelength sources:
 - **4**Integrated optics components are the most promising

How to perform wavelength conversion? Cross Gain Modulation (XGM): Probe cw λ_c SOA TOBPF Converted Signal λ_c Signal λ_s

Gain modulation due to the carrier depletion
Impairments:
SNR degradation

- **4**Extinction ratio degradation
- **4**Bit stream inversion
- **4**Phase modulation

How to perform wavelength conversion?

4 Four Wave Mixing (FWM):

Larrier pulsation at the beating frequency causes index-gain grating which scatters the signal and the pump generating new frequencies.

Wavelength conversion techniques

	XGM in SOA	XPM in SOA	FWM in SOA	DFG in
				Passive waveguides
Bit-rate limit	10 Gbit/s	10 Gbit/s	>10 Gbit/s	>10 Tbit/s
Transparency	Limited	Limited	Strict	Strict
Polarization sensivity	Insensitive	Insensitive	Sensitive	Sensitive
s/n ratio	NF 7-9 dB	NF 3 dB	NF 7-9 dB	Same as input sinal s/n ratio
Simultaneous conversion	No	No	Yes	Yes
Advantages	•Simple configuration	•Reduced Chirp and distortion	TransparencyChirp reversal	TransparencyNo excess noiseBroad bandwidth
Disadvantages	 High chirp, noise figure and distortion. Bit stream inversion 	•Limited transparency	•Large ASE noise	•Crystal poling

Wavelength converter based on FWM

4 Insensitivity to the signal polarization and conversion interval

Modelling wavelength converter based on FWM

Lumped Model

$$\mathbf{E}_{\text{in,soa}\,\mathbf{A}} = \sqrt{\alpha P_{\text{s}}} \cos\theta \exp[j(\omega_{\text{s}}t + \phi_{\text{s}})]\hat{\mathbf{x}} + \sqrt{\frac{\alpha P_{1}}{2}} \exp[j(\omega_{1}t + \phi_{1})]\hat{\mathbf{x}} + \sqrt{\frac{\alpha P_{2}}{2}} \exp[j(\omega_{2}t + \phi_{2})]\hat{\mathbf{y}}$$
$$\mathbf{E}_{\text{in,soa}\,\mathbf{B}} = \sqrt{\alpha P_{\text{s}}} \sin\theta \exp[j(\omega_{\text{s}}t + \phi_{\text{s}})]\hat{\mathbf{y}} + \sqrt{\frac{\alpha P_{1}}{2}} \exp[j(\omega_{1}t + \phi_{1})]\hat{\mathbf{y}} + \sqrt{\frac{\alpha P_{2}}{2}} \exp[j(\omega_{2}t + \phi_{2})]\hat{\mathbf{x}}$$

Modelling wavelength converter based on FWM Saturated Gain

4 Carrier depletion due to the Spontaneous and Stimulated Emission

$$\frac{P_1 + P_2}{P_{sat}} = \left(\frac{1 - \frac{\gamma_{sc}}{\Gamma g_0}}{\frac{\gamma_{sc}}{\Gamma g_0}}\right) \frac{1 - \left(\frac{G}{G_0}\right)^{\frac{\gamma_{sc}}{\Gamma g_0}}}{G - \left(\frac{G}{G_0}\right)^{\frac{\gamma_{sc}}{\Gamma g_0}}}$$

- Efficiency of the FWM process
 - **4** Carrier pulsation is mainly due to the following Physical phenomena
 - Electron-hole recombination
 - Spectral hole burning
 - **4** Carrier heating

$$R(\omega_{1} - \omega_{s}) = |r(\omega_{1} - \omega_{s})|^{2} = \left|\sum_{m=1}^{3} c_{m} \frac{1}{1 - i2\pi(f_{1} - f_{s})\tau_{m}}\right|^{2}$$

$$c_{m} = \frac{g_{0}L}{0.46G\left(1 + \frac{GP(0)}{P_{sat}}\right)} \frac{1 - i\alpha_{m}}{P_{m}}$$

Modelling wavelength converter based on FWM

Performance of the wavelength converter

4 Conversion efficiency

$$\eta \equiv \frac{P_{\text{out}}}{P_{\text{s}}} = \frac{\alpha^4 G^3 P_1 P_2}{4} R(\omega_1 - \omega_{\text{s}})$$

- **4** Signal-to-noise ratio
 - **4** Considering the beating between signal and ASE noise dominant
 - **4** Considering ASE noise added on the same polarization of the signal

$$SNR = \frac{P_{out}}{2W_{ASE}B_{signal}} = \frac{\alpha^4 G^3 P_1 P_2 P_s}{8B_{signal}hf_{conv}(G-1)n_{sp}} R(\omega_1 - \omega_s)$$

Modelling wavelength converter based on FWM

4 Wavelength converter performance

50 40 Efficiency and signal-to-noise ratio (dB) 30 Positive detuning 20 Vegative detuning 20 dB/decade line 10 SNR 0 -10 Positive detuning legative detuning -20 20 dB/decade line -30 Efficiency -40 -50 10^{12} 10^{10} 10^{11} 10^{13} Detuning (Hz)

Opto Speed SOA L956

Optical Confinement	0.35
Scattering loss	1000 (1/m)
Saturation power	8.5 (dBm)
Unsaturated Gain	28.8 (dB)
Length	1.5 (mm)
Active zone area	$0.72 \ (\mu m^2)$
Linear index gain coupling coef.	8
CH index gain coupling coef.	4
SHB index gain coupling coef.	0.6 (not given)
Spontaneous lifetime	70 (ps)
CH lifetime	800 (fs)
SHB lifetime	60 (fs)
CH non linear coefficient	2 (1/W)
SHB non linear coefficient	1 (1/W)
Injection current	500 (mA)

- Measurements from Opto Speed Italia:
 - Down conversion with a frequency detuning of 100 GHz
 - ↓ Efficiency –10.2 dB and SNR 29.1 dB

- **4** Transmitter Output:
 - **4** Average optical power 8 dBm
 - **4** Gaussian pulses at 40 Gbit/s
- Transmission over SSMF
- ♣ Fibre span of 100 km
- Partial compensation of intra-channel non-linear effects
- 4 Optical amplifiers full compensate the fibre losses [G = 25 dB]
- **4** Wavelength Conversion:
 - Signal-Pump1 detuning 250 GHz
 - ♣ Efficiency –18 dB
 - **4** Optical signal-to-noise ratio 22 dB
 - **4** Boost amplification to equalize channels [G = 18 dB]
- Direct detection receptor

4 Optical signal-to-noise ratio at the receptor input

4 Modelling the direct detection's receptor for BER estimation

H BER estimation for a receptor with a gaussian electrical filter

Optical filter bandwidth	100 (GHz)
Responsivity	0.6 (A/W)
Electrical amplifier gain	10 (dB)
Optimum electrical filter bandwidth	16 (GHz)
Extinction ratio	10 (dB)
Input average optical power	2 (dBm)

- ♣ Wavelength converting the channel once the BER degrades 10 dB.
- Wavelength converting the channel twice the BER degrades 15 dB

Conclusions

- Four techniques to perform wavelength conversion:
 - 4 Cross gain modulation (simplest configuration)
 - Cross Phase modulation (good quality of the signal)
 - Four wave Mixing (transparency)
 - Difference frequency generation (excellent performance but difficult fabrication)
- **FWM** Wavelength converter based on a diversity polarization scheme
- Lumped model gives a good approximation to the efficiency and the signal to noise ratio of the FWM converter

Future work

Model should take into account the pulse distortion due the self-phase modulation effect

Acknowledgements

The author is grateful to the Instituto de Telecomunicações, Portugal Telecom Inovação and European Commission (by the ATLAS project) for financially support this work.

Thanks

