Intra-Channel Nonlinear Effects in 40 Gbit/s Optical Communication Systems Over G.652 Fibers

A. Nolasco Pinto, Paulo Almeida and J. Ferreira da Rocha Institute of Telecommunications / University of Aveiro









### Signal Distortion in High-Speed Optical Communication Systems over G.652 Fibers

#### Chromatic Dispersion (17 ps/nm/km)

- 40 Gbit/s system
- 5 ps Gaussian pulses
- After 1.8 km
- BER < 10<sup>-14</sup>



The pulses broadening is about β<sub>2</sub>/T<sub>0</sub> per kilometer Fiber Nonlinear Behavior (1.3 W<sup>-1</sup>/km)



## **Full Dispersion Compensation**









# **Self-Phase Modulation**





















#### 500 km Point-to-Point Link



### Pre-Chirp + Post-Chirp



# Conclusions

- Intra-Channel Nonlinear Effects Induce Pulse Distortion (SPM), Timing Jitter (IXPM), Shadow Pulses and Amplitude Fluctuations (IFWM)
- Intra-Channel Nonlinear Effects Can Be Mitigated Operating in the Pseudo-Linear Regime
  - A Pre-Chirp and Post-Chirp Technique Allows to Operate in the Highly Dispersive Regime in All-Optical Networks



