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Motivation
D

Optical networks with capacity of Thit/s per fiber

Multi-channel (WDM) with Limited EDFA’s
very large number of channels bandwidth

N
Narrow Dense WDM

channel

separation ) (channel separation of 50, 100, 200 GHz)

-

Inter-channel nonlinear effects (FWM, SRS, XPM) affect system performance

XPM appears as one of the most detrimental effects over SMF
and NZDSF
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Cross - phase modulation (XPM)
>

Power

of one optical wave propagating in an optical fiber changes

the refractive index of the fiber which induces

phase shifts

INn other co-propagating waves of different wavelengths
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Outline

XPM in optical fiber DWDM systems:

» How does it work?

» How does it limit the system performance?

» How can it be suppressed / reduced?
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XPM-induced phase shift
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XPM-induced phase shift

- dispersionless fiber - 1

» One interfering channel

Oxem i (1) = —2)P (t =Lt /vy, )D—eff Left = [1‘ e ™7 |/a

» M interfering channels

M
o )= 24 Sl e/ -
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XPM-induced phase shift

- dispersive fiber - S

System .
| nput b\ dr System

< IM-IM conversion Pt - :
Channel, | ¥, AL :

IM, R (t)

XPM

convers on e
Probe R T
Channel, N PM-PM conversion
|

CW a

PM
fiber input v Fi
wavelength

dgyem (2t) = —2)R; (t - z/vy ,k)E(E"“Zdz CLLTXPM i(t)=
gd(OXPM (Z,t - (L - Z)/vg ,i )
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XPM-induced phase shift

- dispersive fiber - 1

» One interfering channel

Ly _ _ _
Oeom i (t) = ‘ZVC{ Pk(t_ Lt /vgi —dy; z)[é “dz dy; :Vg%k _Vgﬁ hl

» M interfering channels

M Lt _
Pxem i (t) = —2yk§1£ At - Lt Vg —di; 2) e %z dy; = jjik D(A)dA = D(A, ) [{A, - A)
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XPM In IM-DD systems

& Current receivers based on direct detection (DD) are
Insensitive to phase variations

but ...

» Fiber dispersion converts pattern-dependent XPM-induced
phase shifts to power fluctuations

XPM manifests in waveform distortion leading to eye diagram
deformation

Phase shifts (frequency chirping) + GVD = iIntensity fluctuations
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System
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Channdl, Ay

IM, P (w)

Probe
Channdl,

Physical explanation

i o
of XPM effect in IM-DD systems
0 7 Ly distance
H : >
R dz System
Output
T | §||\/|
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XPM
conversion .................................................................................
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XPM-induced IM
caused by group velocity dispersion

» One interfering channel

Ly | D(A; )A?
S _ ) -az ‘JW(LT‘Z) Vg, -a(ly-z . 2 i M -
Pxem j(@)= | P (0)e e e e (Lr ), sin| w® L0 fgypy (z,0)
0 - Propagation delay ~ Fiber lossd 4re
Average probe power ropagaliondelay  Flber 10ssdue
at co-ordinate z in probe channel to propagation

in probe channel

Small signal PM-IM conversion

» M interfering channels
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Features of XPM-induced IM
« Depends on bit in probe channel ]
|

— Vanishes for null power in probe channe

Depends on average power, bit and
pulse shape in interfering channel

— Vanishes for constant power in
interfering channel

» The main contribution to XPM effect comes from adjacent
channels

» XPM effect is maximized when pulses in neighboring
channels are time-aligned in the front part of the fiber
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Multiple span fiber link

i
7z=0 Opti_cfal Optical
&Fic%er) amplifier F&%@I’) amplifier

Transmitter
Fiber |

Optical Optical
amplifier Fiber amplifier

|
L Q) ' Recelver

7 A

» Several configurations can be investigated through appropriate choice of

optical amplifiers’ gain and fiber segment properties.
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Normalized XPM-induced IM Index

e Normalized magnitude of IM response induced by XPM
In the probe channel |

r'”|>|§/F|),|ivI = ‘ Py j (a))/ R () B (L)

=P net power gain for the i-th channel from the transmitter
up to the receiver
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Normalized IM index (dB)

Normalized XPM-induced IM Index

N N R e
oo o o1 o O1 O
I I N R

Average power /

channel at fiber
input = 10 dBm

Simple high-pass
e Y characteristic

A 12:4n m

-40 O' | PM-IM
1 1 conversion
Frequency (GHz) caused by GVD
2001.09.07 Redes Opticas Multi-gigabit Il



Normalized IM index (dB)

Normalized XPM-induced IM Index
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Average power /
channel at fiber
iInput =7 dBm

Characteristic with
various dips
(notches) whose
location depends
on channel
separation and
span length



XPM time domain waveforms

2 channels, 0.8 nm of channel separation

Intensity (a.u.)

AU RO

i
XPM probe signal

[three spans of
130 km NZDSF+
115 km NZDSF+

75 km standard SMF]

XPM probe
signal

0 2000 4000 6000 8000 10000

From Hui et al., JLT, pp. 1018-1026, June 1999.
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[10 Gb/s (27-1)
PRBS]




Measure for the extent of the XPM-induced
: ] . NN
signal distortion

Normalized interference induced by XPM

» ratio of the
difference between maximum and minimum value of the
Intensity of the probe channel and
the average value of the intensity in the probe channel
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Normalized interference induced by XPM
AT

Single span of 80 km of SMF, 3 channels

| 3 | 1 Pump channel
|{16dBmpPp 7 - externally

(<D)

% 1 | | | | (chirpless)

e 067 J1w3aBml|/ 7 - modulated with

o 1 1 1 3 a 2’ bit sequence

= 10 dBm | X i i at 5 Gb/s

= 0.4 7 ‘ : : N :

g 7dBm l l l oo,

= |0 dBm |  XPM interference

% 0.2 ‘ | “increases linearly

Z Il \vith interfering
0 - . == B} signal power and

inversely with

0 1 2 3 4 5 6 4 channel

- -1 -
Inverse of channel separation (nm") ~_ separation
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Normalized interference induced by XPM

Normalized interference

Redes Opticas Multi-gigabit |1

Pump channel
externally
(chirpless)

modulated with
a 27 bit sequence
at 5 Gb/s

- XPM interference
“increases linearly
~ with interfering
- signal power and
 inversely with
channel
separation



Estimating the XPM-induce

from CW

b

s Multi-gigabit II

)I/‘f;cem p%mnalt}/

80 km of

e NZDSF,

Gb/s,

_ 10 dBm,
| A4=0.8nm

Change of bit
alignment:
|| look at
perturbed
CW trace at
different
times

—_
——.'._h'-

21



Timing jitter induced)py XPM ™

Freguency chirping (due to XPM-induce' “\oh t) + propagation through
dispersive fiber (slightlydifferent ' > puls/timing jitter

AS! \j /

Worst-case timing jitter: _collision:
jitter caused by the first ~1nterfering pulse has
interfering edge at the fiber inp part way through the signal

The nonlinear interaction respe requency chirping:
occurs only in the firstx = - 2P, /(27T )L
WO

Timig jitter:
5t Y oy = DL (B ypy (% /c = 2P L/(2mAf )

r Jitter value:

Independent of dispersion parameter
Independent of bit rate

AN




Timing jitter induceo

4
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=
()
o

a.=0.7, D:-2ps/nrr/1lkno/>

4 NRZ channels at 40 Ghit
200 GHz of channel sep
km exactly post-DC, t

by XPM

@@nm/km, D,,=70ps/nm

Is shifted by a quarter

iod from the sequence of the
neighboring channel

the recelving ter AN

NV
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Penalty (dB)

Power (dBm)

Spectral broadening induceg by XPM

Pest-compensated

7
|
i
!
i1 !
)
!
I
f

1867

Wavelength (nm)

1857
Wavelength (nm)

rwarCrevs vy tl-glga|t 1]

Four channel, 10
Gb/s, spans of 40
km of SMF
compensated

~ «actly by DCF

Spectral broadening
|eads to coherent
crosstalk between
spectral
Il components of
neighboring
channelsin DWDM

system

r

Thiseffect is
enhanced in
NZDSF




XPM dependence on relative delay between
AT

channels

System length = 360km of SMF, amplifier span = 120km, peak power = 30mW,
two-channel at 2.5 Gb/s

w
(62}

AA =0.4nm

Eye opening degradation (dB)

0 8 16 24 32 40 48 56 64
time delay / bit time

8 time delays per bit are examined and sequences of N,=64 bits are used in the
simulation = 512 simulations corresponding to 512 different time delays are

performed for each set of system parameters.
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XPM dependence on relative bit-phase betwﬂ\

channels (point—to—p t links)

Average eye penalty (dB)

o

0.25 0.5 0.75 1
Relative bit-phase/ Bit time

o

o

N
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(@)

Relative bit-phase/ |

© Peak power = 30m\W | Opticas Multigigabitll - peal nower = 10mW



XPM dependence on type of fiber infrastructure

6 . NZDSF- | 4 DSF| ¢ NZDSF+| 4 SMF+DCF
a..,, 5 (-2.3ps/am.km) 5 [+0.1ps/nm.km) 5 {+3ps/nm. km) 5 {(+17ps/nm.km)
B |4 4 4 4
E 3 3 3 3
g 2 . 2 2

1 ] — | 1 1
5 0 0 I—emy—2=x | 0 |
Q 0 200 400| O 200 400| O 200 400 O 200 400

Spacing (GHz) Spacing (GHz) Spacing (GHz) Spacing (GHz)

Thick lines; worst case
Thin lines: best case _
Worst and best cases obtained as the relative Residual

signal-pump polarization and delay are adjusted dispersion of
—320 ps/nm

From Bigo et al., IEEE PTL, pp. 605-607, May 1999.
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Suppression of XPM

I
» By using source polarisation optimization b

only
applicable

>to point-to-

point links

» By controlling appropriately the prechirping at
transmitter

» By controlling the relative time delays of
adjacent channels at the transmitter Y

» By appropriate ‘I Inconsistent with full GVD

compensation of the compensation at each span
fiber dispersion (does (wWhich requires also in-line dispersion
not remove the XPM- slope compensation) ...
Induced chirp!!!)
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Suppression of XPM

by pulse-width optimisation
20 Ghit/s/ch, 5 channels, channel spacing of 0.4 nm,
20 km SMF + 20 km RDF per span

Gk
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=&~ Single channel

2800 Single-channd!:

2400 _ decrease of pulse width

2000 g Multi-channel:
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1600
2.0 3.0 4.0

——— Relative pulse spacing (T/At) —
Broader puise Narrow pulse

To suppress XPM in DWDM systems, wider pulses are desirable
because of their less peak power (duty-cycle of 50% is suitable)
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Suppression of XPM

by controlling the timing delays at each span

() First fiber input

Ch.n

Ch. n+1

I
(b) No compensation

|(An'/‘n+1) DTI

Ch.n

Tranam.

Ontica Repeater ey

amplifier DCF

amplifier

[]

Key idea: to force the destructive addition
between the contributions of the different
gpans to the overall XPM-induced IM by
Introducing adequate time delays between
adjacent channels at the repeaters

Dé%l
Disp.: D¢

XPM
Uppress. -
s

(c) Full compensation

| (An'/\n+%)(DT+ DC) I

(d) Partial compensation
|(/\n'An+1)(DT+ DC) I

'.tl=i:i

(e) Like (c) with suppressor

(f) Like {d) with suppressor




Suppression of XPM

by Controlllng the tlmlng delays ..

=",
The delays need not % 25
to be set with very § 1:
high precision: FN
relaxed design of >

XPM suppressor

.......

-------

10 Gb/s
per
channel

P

0 100 200 300 400
Total time delay ty [ps]

10 Gbit/s
Receiver

0.4 nm

I
.(cont.

The XPM suppressor can be based on

» Integratable delay lines between
demux/mux stages

» Series of narrow-band fiber Bragg
gratings written at specific locations

management of GVD
and
dispersion sopeto
suppress the XPM
effect

----------------------

» Suppressthe BER

:I . ] L . 04nm floor due to XPM |



Conclusions
DD

» The main features of XPM have been identified and discussed.

» The ways, by which XPM limits the IM/DD DWDM system
performance, have been highlighted.

» Several strategies for suppressing or reducing the degradation
caused by XPM in DWDM systems have been presented and
their main advantages and drawbacks have been discussed.

» XPM can be the most detrimental effect in DWDM systems
over SMF and NZDSF at both low and high bit rates.
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Thank you

for

your attention !!!
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