Dispersion and self-phase modulation compensation in multi-gigabit systems

Paulo Almeida Instituto de Telecomunicações

Limitations to the system performance

- Attenuation
- Dispersion
- Non-linear effects:
 - Self-phase modulation:
 - Pulse
 - Interaction between pulses
 - Cross-phase modulation
 - Four wave mixing
 - Stimulated Raman scattering
 - Stimulated Brillouin scattering
- Optical amplifiers ASE noise

Chromatic Dispersion

Limitations due to the dispersion

- Return to zero coding
- Pulse FWHM broadens to the extent of one bit slot time
- Standard fiber

Bit rate (Gbit/s)	Bit period (ps)	FWHM (ps)	Disp. length (km)
2.5	400	80	565
10	100	20	35
40	25	5	2.2
100	10	2	0.35

A 100 ps² pre-chirp is attained with a negative dispersion fiber.

Prechirp+poscompensation+poschirp

System parameters:

Bit Rate	40 Gbit/s	
Full width half maximum	5 ps	
Wavelength	1553 nm	
Spontaneous emission factor	2	
Fiber attenuation	0.25 dB/km	
Dispersion coefficient	- 20 ps²/km	
Gaussian pulse peak power	50 mw	
Non-linear coefficient	1.3 W/km	
Amplifiers spacing	100 km	

SIMULATION RESULTS FOR A MAXIMUM BER OF 10⁻⁹

Without pre-chirp a total distance of 1200 km was achieved:

With pre-chirp a total distance of 1800 km was achieved:

Self-phase modulation compensation

Pre-chirp computation [Zitelli99]:

ASSUMPTIONS:

- Poscompensation of first order dispersion.
- No second order dispersion $\beta_3 = 0$.
- No non-linear pulse interaction.
- One channel at 40 Gbit/s.

HYPOTHESES:

- The timing jitter is a result of ASE noise addition to the signal.
- No Gordon-Haus effect since $\langle \beta_2 \rangle = 0$.

RESULTS FROM PTDS SIMULATION (TOTAL DISTANCE EQUAL TO 1800 KM):

- Without adding ASE noise to the signal:

- No timing jitter appear. Thus the source must be the ASE noise.

RESULTS FROM PTDS SIMULATION:

- Attenuator + amplifier:

- Timing jitter is equal to 0.14 (ps).

RESULTS FROM PTDS SIMULATION:

- Dispersion poscompensation with fiber gratting:

- Timing jitter is equal to 0.14 (ps).
- The similar results between the two last configurations, allows to conclude that there is not Gordon-Haus effect in such a system.

Following the work done by [Georges93] we have for the pulse jitter at the output of the optical amplifier:

$$\sigma_{t}^{2} = \frac{\pi^{2} n_{sp} (G - 1) T_{0}^{2}}{6 A_{0} N_{g}}$$

where N_g is the number of photons by gaussian pulse:

$$N_g = \frac{Gaussian \text{ pulse energy}}{Photon \text{ energy}} = \frac{2\sqrt{\pi^3}P_0T_0}{hf}$$

Results to the timing jitter variance:

$$\sigma_t^2 = \frac{\sqrt{\pi}n_{sp} (G-1)hfT_0}{12P_0}$$

Conclusions

- The major limiting factors at 40 Gbit/s are:
 - Dispersion
 - Non-linear interaction between pulses
- ASE noise jitter is negligible.
- Total dispersion compensation No Gordon-Haus effect
- The source of ASE noise jitter is the time fluctuations at the optical amplifier.
- Fiber Bragg grating as dispersion compensation device
- Pre-chirp is a suitable technique to decrease the non-linear interaction

