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Abstract

Several research groups have been proposing different dispersion compensation schemes, for very high-speed

(P40 Gbit/s) long-haul systems operating in the C-band window (1530–1563 nm) over standard single mode fibers,

known as ITU-T G.652 fibers. The focus on these high chromatic dispersion fibers is due to the large amount of stan-

dard single mode fibers already installed in the field. Although several dispersion compensation techniques have proved

to be successful, the long term stability of this kind of systems remains to be seen. In fact, when in the field, these high

speed systems present a very unstable behavior, which is translated in large variations of the bit error rate. In order to

stabilize the systems strong forward error correction codes have been used. In this work, we prove quantitatively that

this inherent instability is mainly due to chromatic dispersion variations induced by temperature swings. Two models

for the chromatic dispersion and chromatic dispersion slope variations with temperature are developed and validated

using laboratory measurements previously published. After the effect of temperature change is analyzed in terms of eye

opening penalty, it is shown that for systems operating at 40 Gbit/s and above temperature effects have to be considered

in system design.
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1. Introduction

TRAFFIC demand has been increasing steadily

in the last few years. In order to support this
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increasing traffic demand the optical links between

the main cities, which are typically terrestrial links

with hundreds of kilometers operating at 10 Git/s

per channel, have to be upgraded. A solution for

the upgrading of these links is to increase the bit
rate per channel to 40, 80 or even to 160 Gbit/s.

The major operators intend to use the already in-

stalled cables to support these high speed systems,

which is not surprising, as the most cost effective

solution usually resides in upgrading the terminal

equipment keeping the link unchanged.

However, the majority of the cables in the field

contain G.652 fibers, which have a high level of
chromatic dispersion in the conventional spectral

window, where erbium doped fiber amplifiers pro-

vide the optical gain. In high bit rate systems, in

order to cope with tight restrictions imposed by

chromatic dispersion, it is mandatory to use dis-

persion compensation techniques. Several devices

and schemes have been proposed to provide an

accurate management of the chromatic disper-
sion, over a large spectral window. However,

even with wavelength per wavelength careful tun-

ing, these systems still present an unstable behav-

ior when tested in the field subjected to extreme

environmental conditions. In order to maintain

the bit error rate as low as 10�15, systems design-

ers have been using strong forward error correc-

tion codes. In this work, we account for the
fundamental reason behind this unstable

behavior.

Some authors have already attributed this

unstable behavior to chromatic dispersion fluctua-

tions induced by temperature variations. However,

this problem is far from being completely solved.

The earlier studies were mainly based on the previ-

ous notion that very high speed systems have to
operate around the zero dispersion wavelength

(k0). Hence, the focus was on the variation with

temperature of the zero dispersion wavelength

and on the dispersion around k0. However, the

modern dispersion compensation devices and tech-

niques allow these high speed systems to tolerate

much higher levels of local chromatic dispersion

[1].
In previous studies, the classical oscillator Lor-

entz�s model, from which the Sellmeier�s formula

can be derived, have been largely used to consider
the material refraction index variations with fre-

quency and temperature.

In the studies presented by Hatton et al. [2] and

Kim et al. [3] it was shown that the variation of k0
with the temperature (dk0/dT) is largely determine
by the fiber�s material. It was also shown in [2] for

non-dispersion shifted fibers that, for pure silica

and GeO2 doped silica core fibers, the relation be-

tween the change in the zero dispersion wavelength

and temperature variations is almost linear and

around 0.025 nm/�C, for temperatures below

150 �C. A value slightly high, 0.030 nm/�C, was

obtained by Kim et al. [3] for dispersion shifted fi-
bers. In [3] the variation of k0 with the temperature

was also analyzed using a two-term Sellmeier for-

malism, where all electronic oscillators were

lumped into one effective term, and all lattice

vibrational oscillators into another. It was found

in [3] that the temperature dependence of k0 is

mainly due to a �0.4 meV/�C temperature shift

of the electronic Sellmeier band gap.
The study of the temperature dependence of the

Sellmeir coefficients was also done in [4–6], respec-

tively, by Lines, Matsuoka et al. and Ghosh et al.

In [4] a microscopic analysis based on solid-state

theory was done about the origin of the tempera-

ture dependence of the Sellmeier coefficients and

a theoretical value was obtained in close agree-

ment with the experimental one. It was also
pointed out in [4] that the shift in the electronic

resonance frequency contributes more than 95%

of the material dispersion variation with tempera-

ture around the material zero dispersion wave-

length. In [5], instead of lumping all the

electronic oscillators into one effective term, two

electronic resonance frequencies were considered.

One to account for an exciton transition, with a
resonance energy around 10.4 eV, and another to

account for a band-to-band transition with a

resonance energy around 11.6 eV.

In [7,8] a physically meaningful model for the

temperature dependent refraction index of fused

silica was presented by Ghosh. According to

Ghosh, the variation due to temperature of the

refraction index of fused silica can be described
considering two terms, one related to the material

thermal expansion and another related to the elec-

tronic resonance energy. The thermal expansion
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related term gives a negative contribution for the

variation of the refraction index with temperature,

as the material gets less dense. The term related to

the shift of the electronic transition gives a positive

contribution generally higher than the previous
one.

Kato et al. [9] measured the chromatic disper-

sion of various types of optical fibers from 1535

to 1585 nm at different temperatures. They showed

based on measurements that the chromatic disper-

sion slope and the chromatic dispersion thermal

coefficient, defined as the variation of the disper-

sion with temperature, are correlated. Fibers with
small dispersion slope presented also a small chro-

matic dispersion thermal coefficient. However, this

conclusion seems not to apply always to fibers with

high dispersion and dispersion slope governed by

supermode coupling, as the dispersion compensa-

tion fibers (DCFs), as was pointed out by Schnei-

der [10]. However, the results presented by

Schneider were not confirmed by Rathje et al.
[11], leaving the study of the thermal coefficient

for DCFs as an open subject. Nevertheless, it

seems that some DCFs present a positive thermal

dispersion coefficient which can be used to coun-

terbalance transmission fibers with a negative ther-

mal coefficient. This was the support idea of the

dynamically chromatic dispersion compensation

scheme presented in [12].
Hamp et al. [13] measured the chromatic disper-

sion for different kind of fibers for several temper-

atures, and reached the conclusion that the

dispersion slope at the zero dispersion wavelength

depends significantly on temperature and this

dependence should not be ignored to estimate the

chromatic dispersion thermal effect for wave-

lengths far away from the zero dispersion
wavelength.

In [14,15], the implications of temperature in

single-mode fibers and high-speed systems, 40

and 80 Gbit/s, were analyzed.

In this full-length paper, two different ap-

proaches to model the chromatic dispersion

dependence with temperature are in detail pre-

sented and compared. The first model is a more
fundamental one in the sense that it is based on

modeling the change in the interaction between

light and matter with temperature. The second
one is based on a heuristic expression for the

chromatic dispersion. As we will show both mod-

els present quite accurate results. Using these

models, values for chromatic dispersion and chro-

matic dispersion slope variations with tempera-
ture for standard single mode fibers, valid for

the C-band, where erbium doped fiber amplifiers

provide optical gain, are obtained. These values

are validated by means of comparing with the

measurements taken in [13]. High speed systems

operating in the C-band, over standard single

mode fibers which have the zero dispersion wave-

length around 1315 nm are analyzed. The results
obtained show clearly the importance of consider-

ing the effects of temperature in high speed opti-

cal communication systems design.
2. Group velocity dispersion in single-mode optical

fibers

The refractive index of a material is the ratio of

the speed of light in vacuum to the speed of light in

the material. The variation of the refractive index

with the frequency of the incident light constitutes

the phenomenon of material dispersion. At the

present time, the more complete description of

the interaction between light and matter is given

by the quantum theory of light. Hence, for a full
account of the dispersion of light it would be

necessary to go deeply into the atomic theory of

matter. However, it is possible to describe the

dispersion of light with a reasonable accuracy by

the use of a classical model, mainly due to H.A.

Lorentz, by considering the material response

similar to the response of m harmonic oscillators.

2.1. A detailed model for chromatic dispersion

The classical Lorentz�s oscillator model is able

to account for electronic transitions and lattice

vibrations, which are the dominant effects in mate-

rials where free carrier effects are negligible. Based

on the oscillators Lorentz�s model, an expression,

usually called the Sellmeier formula, for the refrac-
tive index, n, valid for low loss materials and for

optical wavelengths, k, far from the material reso-

nances, can be obtained [16]
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n2 � 1 ¼
Xm
k¼1

Akk
2

k2 � k2k
; ð1Þ

where Ak is directly proportional to the number of

oscillators per unit of volume and to the square of

kk, which is the vacuum resonant wavelength asso-
ciated with the kth resonance frequency of the

material. For silica, a three-term Sellmeier expres-

sion is in general used, considering a resonance in

the infrared, accounting for lattice vibrations, and

two in the ultraviolet, accounting for electronic

transitions. Values for the three Ak and kk coeffi-

cients have been experimentally estimated for pure

and doped silica, see for example [16].
The group material dispersion parameter,

Dm(k) can be directly obtained from (1)

Dm kð Þ � dtg
dk

¼ 1

c
dN
dk

¼ � k
c
d2n

dk2
; ð2Þ

where tg is the group delay over a unit of distance,

k is the free-space wavelength and N is the group

index of the material.

In order to evaluate the group dispersion

parameter, D(k), in single-mode optical fibers, be-

sides the material dispersion, it is also necessary to
account for dispersive effects that arise from

waveguiding.

In this work, we are going to consider only sin-

gle-mode step-index fibers, however, the theoreti-

cal analysis can in principle be generalized for

others fiber profiles, by means of considering an

‘‘equivalent’’ step-index profile [16].

For single-step single-mode optical fibers the
group dispersion parameter is usually written as

the summation of three terms, referred as the com-

posite material dispersion, Dcm(k); waveguide dis-

persion, Dw(k); and profile dispersion, Dp(k) [16].

D kð Þ ¼ Dcm kð Þ þ Dw kð Þ þ Dp kð Þ: ð3Þ

In order to estimate the dispersion in single-

mode fibers, a few approximations are usually

done, which simplify the final expression for D(k)
without significantly compromising the accuracy.

First, the group index of the fiber core and clad-

ding are assumed to have a similar variation with

the wavelength making possible to estimate the

composite material dispersion from (2). Second,

the cladding refractive index variation with wave-
length is ignored when evaluating Dw(k), as a

result the waveguide dispersion can be approxi-

mated by (4).

Dw kð Þ � � n2D
ck

V
o2 bVð Þ
oV 2

� �
: ð4Þ

In (4) n2 is the refractive index of the fiber clad-

ding and D is the normalized index difference, and

V and b are, respectively, the normalized frequency
parameter and the normalized propagation

constant.

A simple approximation to the expression

between square brackets in (4) was found by Jeun-

homme [16]

V
o2ðbV Þ
oV 2

� 0:080þ 0:549 2:834� 2:405
kc
k

� �2

:

ð5Þ

In (5) kc stands for the cutoff wavelength of the

LP11 mode. A typical value for kc in single-mode

fibers is 1.2 nm and in this case the error associated

with the approximation done in (5) is less than 5%

over the range 1200 < k < 2200 nm [16].

Finally the profile dispersion, which appears in

expression (3), can in principle be neglected due to
its smaller value when compared with the compos-

ite material and waveguide dispersion.

2.2. A simplified model for the chromatic dispersion

For practical purposes a heuristic expression,

(6), is frequently used to extrapolate the chromatic

expression in optical fibers from the zero disper-
sion wavelength and the dispersion slope at the

zero dispersion wavelength.

D kð Þ ¼ S0

4
k� k40

k3

� �
: ð6Þ

In (6) S0 stands for the dispersion slope at the

zero dispersion wavelength and k0 is the zero

dispersion wavelength.

For a single-mode fiber with a cutoff wave-

length of 1200 nm and a normalized index differ-

ence of 0.3% we obtained a maximum error of

6% for the dispersion value over the range
1200 < k < 1700 nm, when comparing the result

obtained with the use of expressions (1) through
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(5) with the result obtained with expression (6).

The comparison of these values is plotted in Fig. 1.

The experimental validation of expression (6)

was done in [13] for a wide range of single-mode

optical fibers, commercially available and with
practical interest for high speed optical communi-

cation systems. The results obtained with expres-

sion (6) matched the laboratory measurements

considering the experimental uncertainty in the

measurements, over a range of temperatures from

�40 to 60 �C.
3. The temperature dependent dispersion and

dispersion slope

In the previous section, we did not consider the

effect of temperature. In this section, we are going

to consider the temperature effect using two differ-

ent approaches. The first approach will be based

on the detailed model for the dispersion presented
in Section 2.1 and the second on the simplified

model for the dispersion presented in Section 2.2.

3.1. Based on the detailed model for the dispersion

It is known that the refractive index changes

with temperature, which means that the Ak and
Fig. 1. Comparison between the dispersion values for a single-

mode optical fiber obtained with expressions (1) through (5)

and with expression (6). The S0 and k0 parameters that appear

in (6) where obtained considering the results of expressions (1)

through (5).
kk coefficients, in expression (1), are temperature

dependent. As the refractive index is temperature

dependent, the dispersion and dispersion slope will

also change with temperature. In order to model

the dispersion and dispersion slope dependency
of temperature we are going to analyze first the

variation of the refractive index with temperature.

Expression (1) can be rewritten in terms of pho-

ton energies, doing this expression (7) is obtained.

n2 ¼ 1þ
Xm
k¼1

ak
E2
k � E2

: ð7Þ

In expression (7), E is the photon energy, Ek

and ak, are, respectively, the kth resonance energy

and the oscillator strength multiplied by the num-

ber of oscillators per unit of volume correspondent

to the kth resonance energy.

In [5], Matsuoka et al. presented the following

values for the silica resonance energies: 0.14, 10.4

and 11.6 eV. The two resonance energies in the

ultraviolet are related to electronic transitions
and, since they are very close together can be

lumped into one effective electronic resonance en-

ergy. In this way, the summation that appears in

expression (7) is reduced to a two term summation,

one to accounts for the lattice vibrations and

another to describe the electronic transitions.

Moreover, in [5] it was shown that the resonance

energy around 0.14 eV, corresponds to a lattice
vibration and is almost independent of the

temperature.

Taking the derivative of (7) with respect to tem-

perature and treating the term related to lattice

vibrations as temperature independent, expression

(8) is obtained

2 � n � dn
dT

¼ 1

E2
e � E2

� � dae
dT

� 2aeEe

E2
e � E2

� �2 dEe

dT
: ð8Þ

In (8), the ae coefficient is the product of the
effective electronic oscillator strength by the num-

ber of oscillators per unit of volume and Ee is the

effective resonance energy associated with the elec-

tronic transitions.

The oscillator strength can be assumed temper-

ature independent, because the strength of an elec-

trical oscillator is related with the mass and charge

of the particles involved which are believed not to
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be significantly affected by temperature. In a differ-

ent way the number of oscillators per unit of vol-

ume is temperature dependent because of the

material thermal expansion. The material thermal

expansion will decrease the number of oscillators
per unit of volume by a factor that is approxi-

mately proportional to three times the linear ther-

mal expansion coefficient.

Considering the linear thermal expansion coeffi-

cient, a, in (8) expression (9) is obtained.

2 � n � dn
dT

¼ � 3aae
E2
e � E2

� �� 2aeEe

E2
e � E2

� �2 dEe

dT
: ð9Þ

Expression (9) can be rewritten in order to

introduce the n1 parameter that appears in [7]. This

n1 parameter is the refractive index in a region of

the spectrum between the two major resonance fre-

quencies, the ionic and the electronic. In this re-

gion, the index of refraction already falls after
the surge due to the ionic resonance and does

not start to rise yet due to the electronic resonance,

therefore is almost independent of the frequency.

Introducing n1 in expression (9) expression (10) is

obtained.

2 � n � dn
dT

¼ �3a
E2
e

E2
e � E2

� � n21 � 1
� �

� E4
e

E2
e � E2

� �2 2

Ee

dEe

dT
n21 � 1
� �

: ð10Þ

When expression (10) is rewritten in terms of

the wavelength, expression (11) is obtained which

corresponds precisely to expression (2) presented
in [7].

2n
dn
dT

� �
¼ �3a n21 � 1

� �� � k2

k2 � k2e

 !

þ � 2

Ee

dEe

dT
n21 � 1
� �� �

k2

k2 � k2e

 !2

:

ð11Þ
One way to include the effect of temperature in

the study of fiber optic communication systems is
to use expression (11) in conjugation with expres-

sions (1)–(5).

This approach requires the knowledge of the

fiber profile and the core and cladding material,
or some other values from which the input values

for Eqs. (1)–(5) and (11) can be estimated.

3.2. Based on the simplified model for dispersion

Another approach to account for fluctuations

in the dispersion due to temperature is to include

this effect directly in expression (6). Assuming that

both parameters of expression (6), k0 and S0, are

temperature dependents, the dispersion as function

of the temperature is given by (12).

dD
dT

¼ 1

4
k� k40

k3

� �
dS0

dT
� S0k

3
0

k3
dk0
dT

: ð12Þ

From (12) is possible to obtain the dispersion

variation with temperature around k0, by making

k equals k0. This was done in [9] and [13] and
expression (13) was obtained

dD
dT

����
k¼k0

¼ �S0

dk0
dT

: ð13Þ

Expression (12) is critical to assess the impor-
tance of the temperature in optical systems. How-

ever, for high-speed systems as important as the

chromatic dispersion is the chromatic dispersion

slope around the central wavelength.

The chromatic dispersion slope can be obtained

from (6), taking the derivative in order to the

wavelength, by which expression (14) is obtained.

dD
dk

¼ S0

4
1þ 3

k40
k4

� �
: ð14Þ

From (14) and assuming again that k0 and S0

are function of temperature is possible to derive

an expression for the variation of the dispersion

slope with the temperature, see expression (15).

d

dT
dD
dk

¼ 1

4
1þ 3

k40
k4

� �
dS0

dT
þ 3S0

k30
k4

dk0
dT

: ð15Þ

The use of expressions (12) and (15) requires

the knowledge of four values, the zero disper-

sion wavelength and the dispersion slope at the

zero dispersion wavelength and their variations

with temperature. Again, with the available pub-

lished data for fused silica based optical fibers it
is not difficult to find values for these

parameters.



Fig. 2. Fiber chromatic dispersion as function of the temper-

ature for 1550 nm. Points and error bars obtained using

expression (6) and (12) with input parameters taken from [13]

for a standard single-mode fiber with zero dispersion wave-

length of 1319.30 ± 0.14 nm at room temperature. Dashed lines

were obtained using a least-square error method applied to the

plotted points. The solid line was obtained with expression (3)

and (11), using input parameters obtained from [7].

Fig. 3. Fiber chromatic dispersion slope as function of the

temperature for 1550 nm. Points and error bars obtained using

expression (14) and (15) with input parameters taken from [13]

for a standard single-mode fiber with zero dispersion wave-

length of 1319.30 ± 0.14 nm at room temperature. Dashed lines

were obtained using a least-square error method applied to the

plotted points. The solid line was obtained after calculating the

numerical derivative in order to the wavelength of (3), using

(11) with input parameters obtained from [7].
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3.3. Expressions validation

In [13] the accuracy of expression (6) over a tem-

perature range of 100 �C, from �40 to 60 �C, was
evaluated by means of laboratory measurements
of the chromatic dispersion in standard single-

mode fibers and non zero-dispersion-shifted fibers

subjected to a temperature controlled environment.

From those measurements the values for k0 and S0

for single-mode fibers where estimated for different

temperatures and compared with the values pre-

dicted by a model based on expression (11). The

theoretical values matched the experimental results
within the uncertainty of the measurements, there-

fore validating expression (11).

Considering the values presented in [13] for S0,

dk0/dT, dS0/dT and their uncertainties, for a stan-

dard single mode fiber with the zero dispersion

wavelength at 1319.30 ± 0.14 nm, at room temper-

ature, and using expression (6) and (12) we esti-

mated the fiber dispersion for different
temperatures at 1550 nm. These values are plotted

in Fig. 2, along with side error bars obtained by a

standard-error propagation method. From this

values a linear regression was obtained, dashed

line. This result was compared with the one ob-

tained using the detailed method presented in Sec-

tion 3.1, solid line. As it is clear from Fig. 2, both

methods led to similar results. A value of
�1.4 · 10�3 ps/nm/km/�C was obtained for the

chromatic dispersion thermal coefficient.

The dispersion slope for different temperatures

was estimated using expression (14) and (15) and

the values measured in [13], see the points in Fig.

3. Along side with these values an error bar is ob-

tained using a standard error propagation method

and the uncertainty in the measurements. After
performing a linear regression a straight line with

positive slope was obtained for the variation of

the dispersion slope with temperature. The slope

value obtained was 2.1 · 10�6 ps/nm2/km/�C, see
dashed line in Fig. 3. We also estimated the disper-

sion slope thermal coefficient using the detailed

method presented in Section 3.1, with input param-

eters from [7], see full line in Fig. 3. As can be seen
in Fig. 3, the obtained results are quite similar, con-

firming that both methods give results within the

uncertainty of the experimental measurements.
In this section, two different approaches were

presented to include the temperature effect in the

chromatic dispersion. Both methods give quite
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similar results and within the experimental uncer-

tainty of the experimental values available. There-

fore, the choice between one of them should be

related with the kind and uncertainty of the avail-

able data for the optical link under analyze.
Fig. 4. Eye opening penalty versus temperature of the optical

fiber link for several system bitrates. All systems were optimized

for a 20 �C environment temperature. Lines are guides for the

eyes. Results obtained for 500 km of fiber, ideally dispersion

compensated at 20 �C, employing Gaussian optical pulses with

a pulse width of 20% of the bit time slot.
4. Implication in high speed systems

In order to evaluate the implications of the tem-

perature effects in high speed systems, we analyzed

several systems over the same optical link. The link

that we considered was 500 km long, with five
erbium doped fiber amplifiers (EDFA) spaced

100 km apart and being the first one placed just

after the emitter to serve as a booster amplifier.

The emitter output pulses have a Gaussian

shape with a FWHM width of 20% of the bit time

slot, a 1550 nm central wavelength and the fiber is

feed with an average power of +5 dBm. In the sim-

ulations, we solved numerically the generalized
Schrodinger equation with the split step method

[17], considering a pseudorandom bit sequence

(PRBS) of 29 � 1 word length.

Before the receiver the chromatic dispersion

was optically compensated using DCFs in a

scheme coined all-at-the-end [1]. The DCFs were

assumed to fully compensate the optical link dis-

persion at the temperature of 20 �C for the em-
ployed wavelength, along with the DCFs links

were intercalated ten optical amplifiers to compen-

sate the losses. These amplifiers were used to com-

pensated for losses in the DCFs and to keep the

optical power in the DCFs at a reasonably level,

0 dBm at the DCFs input, in order to simulta-

neously prevent severe non-linear degradations

and noise addition to the signal, as suggested in
[1]. The DCFs and these ten amplifiers are as-

sumed to be placed in a room along with the recei-

ver in a controlled temperature environment. All

the used EDFAs were ideal with a inversion pop-

ulation factor of Nsp = 2.

The optical receiver was modeled as an ideal

PIN photodiode followed by a fourth-order Bes-

sel–Thomson electrical filter. The electrical filter
bandwidth at the receiver was adjusted for each

system in order to remove part of the noise with-

out producing a severe intersymbolic interference.
This resulted in a value for the electrical filter

bandwidth around 0.8 of the bitrate. Each system

was optimized for 20 �C outside temperature in

terms of eye open aperture. After the optimization

the outside temperature was allowed to change
and the eye open aperture was measured for differ-

ent temperatures. The eye open penalty was de-

fined as conventionally, see expression (16),

where EOA20 �C stands for eye open aperture at

20 �C and EOAT for the eye open aperture at a

temperature T.

P ¼ �10 � log10
EOAT

EOA20 �C

� �
: ð16Þ

The obtained results are presented in Fig. 4. As

it is clear from these results, the 10 Gbit/s system is
almost insensitive to temperature changes. How-

ever the 40 and 80 Gbit/s systems suffer a consider-

able penalty due to temperature change, analogous

results for this two bit-rates were presented in [14]

and [15], respectively. The 160 Gbit/s system suffer

a severe penalty with the temperature change, a

3.8 �C drift in the temperature produces a 3 dB

penalty.
The asymmetry of the penalty in relation to the

optimized point, clearly visible in the 40 Gbit/s

data, demonstrate that the all-at-the-end compen-

sation scheme is more tolerant to positive overall
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dispersion than to negative overall dispersion. At

40 Gbit/s, according to several field trial results

presented in the literature, it seems possible to

compensate this penalty by means of forward error

correction codes but at 160 Gbit/s the penalty is so
high that it seems infeasible to compensate that by

coding. In these high speed systems seems that

some kind of dynamically adjustable receiver must

be used in order to compensate the effect of

temperature.
5. Conclusions

Two different methods to account for the ther-

mal effect in optical fibers were presented. The

methods were compared and assessed by means

of comparison with measured values. Both meth-

ods produce results within the experimental uncer-

tainty. Some high speed systems were analyzed for

thermal sensitivity. Systems at 40 Gbit/s and above
presented a severe degradation due to temperature

changes. A sweep of temperature between �40 and

60 �C was considered. Aerial optical systems are

expected to suffer changes of temperature of this

magnitude in several areas of the planet, which en-

force the need to consider the thermal effect in the

design of high speed optical communication sys-

tems. In the case of underground systems, daily
soil temperature changes are small, however sea-

sonal variations could be considerable, as was

shown by Walter et al. [18], making again critical

to consider this effect in high speed systems design.

In undersea systems, which operate in a more con-

trolled environment, the fact that systems assem-

bly and test usually take place at room

temperature may indicate the need for use of an
adjustable receiver to compensate the temperature

difference between the laboratory and the deep

ocean. In the analyzed systems the DCFs fibers

were kept inside a room along with the optical

amplifiers and receiver, this is a typical procedure;

however with respect to temperature sensitivity

same improvement could be achieved with positive

dispersion thermal coefficient DCF fibers if there
temperature is kept more correlated with the trans-

mission fibers temperature.
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