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We review the research progress concerning some fundamental issues related to
polarization-mode dispersion (PMD) in high-speed fiber-optic transmission systems.
We pay particular attention to issues such as the PMD-induced pulse broaden-
ing, PMD measurement and emulation, as well as PMD compensation. An elec-
trical equalization technique based on a transversal filter and an optical technique
based on a nonlinear chirped fiber Bragg gratings for PMD compensation will be
discussed.
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Introduction

The phenomenon of polarization-mode dispersion (PMD) is now considered to be one
of the main limiting factors for high-speed long-haul lightwave transmission systems,
especially for systems with bit rate of 40 Gb/s per channel and beyond [1–3]. The origin
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of PMD is the small random birefringence in the optical fiber caused by imperfections
in the manufacturing process and/or mechanical stress on the fiber after manufacture.
This birefringence leads to different dispersion relations for the two orthogonal polarized
modes of the fiber [4]. Besides that, the random change of birefringence along the fiber
results in random coupling between the modes.

Typically, PMD is represented by a vector that has a magnitude equal to the dif-
ferential group delay (DGD), �τ , which is the time delay between the two orthogonal
principal states of polarization (PSP) [5]. Neglecting variations in the PMD vector with
respect to frequency, first-order PMD is obtained. However, in real fibers, both the mag-
nitude and direction of the PMD vector change with frequency, meaning that higher-order
PMD must generally be considered.

There is a large interest in techniques to compensate for or mitigate the effects of
PMD, and a number of methods have been proposed. The main problem is the temporal
random change of the PMD, which forces any compensation technique to dynamically
adapt while the system is running.

Transmission fibers have random birefringence; i.e., a birefringence whose main axes
and strength change along the fiber and time in a random manner. In long fibers, the
statistical probability distribution of the DGD is Maxwellian [6] and the average DGD
grows as the square root of the fiber length [7]. Since its nature is essentially random,
the most common way to treat PMD mathematically is by mean of statistics [6, 8, 9].

In this article we review recent research related to PMD. The basic theory of PMD is
presented. Moreover, the impairments from PMD, as well as the compensation methods,
are discussed in terms of root-mean-square (rms) pulse broadening. We address the
problem of PMD measurement. Due to the statistical nature of PMD, it is difficult
to assess the performance of a PMD compensator in a real fiber communication sys-
tem. A PMD emulator makes possible such assessment. A review of the main PMD
emulator types is presented and describes a novel configuration. The final part of the
article is dedicated to the PMD compensation issue. First, an electrical transversal fil-
ter is used, and afterwards a dynamical optical compensation technique using nonlinear
chirped fiber Bragg gratings is presented. Finally, the main conclusions of the article are
summarized.

Theory

PMD Fundamentals

PMD is caused by optical birefringence and its variation along optical fibers. The bire-
fringence in single-mode optical fibers destroys the degeneracy of the two orthogonal
polarized modes, leading to different propagation delays. Due to the fact that pulses
couple with both modes, difference in the delays leads to pulse broadening. When the
difference in the delays approaches a significant fraction of the bit period, strong system
penalties occur.

An ideal single-mode fiber supports two degenerated orthogonal polarized modes.
Due to the degenerated characteristic of these modes, coherent light maintains its state of
polarization (SOP). However, the perfect circular shape that is required for the degeneracy
of the orthogonal modes is not achieved in practice. Some asymmetry in the fiber always
exists leading to a difference in the propagation constant of the two orthogonal modes.

A more realistic model for the fiber is obtained considering that the fiber core has
an elliptical shape instead of circular one. In the elliptical shape model is possible to
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define two main axes, coincident with the physical axes, having different propagation
constants. If coherent linearly polarized light is launched in a direction not coincident
with one of this principal axes, light couples with both modes. In this situation, light
polarization goes from linear to various states of elliptical polarization before returning
again to its original linear polarization. The light goes through this cycle periodically
because the phase difference φy − φx varies periodically due to the fact that βy − βx is
not zero but is constant, φx , βx and φy , βy represent, respectively, phase of the electrical
field and propagation constant in the x and y axis. The transmission length associated
with this oscillation in the light polarization is known as the beat length (Lb). Standard
telecommunications fibers, for wavelengths (λ) around 1550 nm, have for the orthogonal
modes a relative refraction index difference (�n/n) of the order of ∼10−7 leading to
beat lengths (Lb = λ/�n) of the order of ∼10 m [10]. The quantity �n = |nx − ny |,
sometimes represented by a capital B, is known as the fiber birefringence. In the latest
definition it was assumed that the x and y direction were made coincident with the slow
and fast axis of the elliptical core fiber.

However, in practice, this periodical behavior is not observed in a fiber with small
birefringence. This is due to the fact that the perturbation that induces the birefringence
does not remain constant. Indeed, this perturbation is a random process, with roots in the
lack of control at the fabrication and deployment of the fiber and cables.

Therefore, a more suitable model to describe the evolution of polarization is a con-
catenation model in which small pieces of elliptical fibers with uniform birefringence
are randomly rotated and concatenated. With this concatenation model, light polarization
through propagation in an optical fiber does not present a periodical behavior.

In the concatenation model, the random nature of the polarization evolution appears
only along the propagation distance. Therefore, the different polarization states of light
can in principle be deduced from the complete knowledge of the birefringence along the
fiber. However, neither is it frequently possible to obtain this knowledge in practice nor
does the birefringence remain invariant with time. Indeed, birefringence is very sensitive
to external conditions as mechanical stress and temperature. For that reason, in the model
used to describe birefringence in long fibers, a random process is also introduced in the
time domain. Therefore, besides the random rotation along the propagation distance the
perturbation that produces the birefringence is also a random process, leading to a random
rotation of the axes with time.

The concatenation model with random mode-coupling subjected to random pertur-
bations only allows a statistical treatment. A quantity known as the correlation length,
Lc, is used to describe how effective this random mode-coupling is in terms of prop-
agation distance. Lc is defined as that length where the power difference has decayed
to 〈px〉 − 〈py〉 = 1/e2, assuming 〈px〉 = 1 and 〈py〉 = 0 at the input, where 〈px〉
and 〈py〉 are averages of the optical power measured in the x and y axes, respectively.
Correlation lengths can be less than 1 m when fiber is spooled, due to the large amount
of polarization mode coupling, and can be ∼1 km when fiber is cabled [4].

With this concatenation model with random mode-coupling subjected to random
perturbations, it is virtually impossible to predict light polarization in long fibers, as the
ones used typically in telecommunications systems. Nevertheless, the final polarization
state of the light is not a major concern in current direct detection receivers, as these
receivers are insensitive to the state of polarization. What affects such receivers is not
the random polarization state of light, but the pulse broadening due to PMD.

The birefringence changes randomly along the fiber length but it is possible to
define a special orthogonal pair of polarization at the fiber input called the “principal
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states of polarization” (PSPs). Light launched in a PSP does not changes depolarization
at the output when wavelength is slightly varied. These PSP modes have different group
delays, τg , which are the maximum and minimum mean time delays in the time domain
view. The difference between the two delays is called the differential group delay (DGD)
and characterizes the first-order PMD effects.

Using the Principal States Model [4], PSPs and DGDs may both be described by
the PMD vector, �. The PMD vector is just a vector in the Stokes space pointing in the
direction of the fast PSP, with length equal to the differential group delay, �τ .

The statistical theory of PMD has provided an elegant expression linking the mean
square DGD as a function of the propagation distance, L, with Lb and Lc [10]:

〈�τ 2〉 = 2

(
�τb

Lc

Lb

)2 (
L

Lc

+ e−L/Lc − 1

)
(1)

where �τb = Lb�n/c is the DGD for a single beat length and c is the speed of light in
vacuum.

It is interesting to note than when L � Lc, corresponding to the so-called short-
distance regime, the PMD grows linearly with the transmission distance. On the other
hand, when L 	 Lc (the long-distance regime), the PMD grows with the square root of L.
In the last case, the mean square root of DGD is given by �τrms = √〈�τ 2〉 = Dp

√
L,

where Dp is the PMD coefficient.
Furthermore, in long-distance regime fibers, the probability density function (pdf) of

DGD is Maxwellian [6]:
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where 〈�τ 〉 is the mean DGD. The mean DGD is related to �τrms by the expression

〈�τ 〉 =
√

8
3π �τrms.

PMD-Induced Pulse Broadening

A well-known manifestation of PMD is that optical pulses broaden by an amount that
is dependent on the launched SOP. The rms pulse width broadened due to the PMD is
given by [11]:

τ 2 = τ 2
0 + 1

4
[〈�2〉 − (s · 〈�〉)2] (3)

where τo is the initial rms pulse width, s is the input SOP (Stokes vector), and the
bracket denotes frequency average. Equation (3) includes all order PMD effects and does
not depend on the pulse shape. We define an expected rms broadening factor b as

b2 = E

[
τ 2

τ 2
o

}
= 1 + 1

4τ 2
o
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where E{·} denotes expectation value. From Equation (4), the broadening factor due to
the PMD is given by [12]:
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where g(ω1 − ω2) satisfies Equation (6) and f̃ (ω) is the pulse Fourier transform. In
deriving Equation (5), the frequency correlation of the PMD vector is used, which is
given by [9, 13]:

E{�i(ω1)�j (ω2)} = 1

3
δij g(ω1 − ω2) = δij

1 − exp

[
−E{�τ 2}

3
(ω1 − ω)2)2

]
(ω1 − ω2)2

(6)

For an unchirped Gaussian initial pulse with amplitude f (t) = A exp(−t2/2T 2), where
T = √

2τo is the initial pulse width and A is the initial pulse amplitude, the broadening
factor is calculated analytically and given by

b2
unc = 1 + x − 1

2

[(
1 + 4x

3

)1/2

− 1

]
(7)

where x = E{�τ 2}/4τ 2
o is a measure of the amount of average PMD relative to the

pulse width. In the long-pulse regime (x � 1), the normalized broadening approaches
b2

unc ≈ 1 + 2x/3, while for x 	 1 the PMD dominates the broadening and b2
unc ≈ x.

PSP Transmission

The first approach to PMD compensation was based on launching the signal into a PSP,
which results in less output signal distortion [14]. In practice, a control signal must be
fed back to the input from the receiver. The analysis of such a system is performed
considering s = 〈�〉/|〈�〉| and the resulting average broadening becomes [12]:

b2
psp = 1 + x − 3

2

[(
1 + 4x

3

)1/2

− 1

]
(8)

which is always smaller than the uncompensated result. In particular, for small PMD
values (x � 1), we have b2

psp ≈ 1 + x2/3. On the other hand, for large PMD values the
squared broadening factor increases proportionally to x.

First-Order Compensation at the Carrier Frequency

One compensation approach in the receiver is to cancel out the PMD vector at the
carrier frequency �(0) with a variable first-order PMD compensator. The input PMD
vector of such a system is the vector sum of the PMD vector of the fiber and that of the
compensator; i.e., �tot,1 = �−�(0). The pulse broadening in this case can be calculated
performing a similar analysis as above but now by using the vector �tot,1 instead of �.
The result is [12]:

b2
1st = 1 + 5x

3
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(9)

In Equation (9), b2
1st increases as 1 + x2/3 for small x, giving the same result as the

PSP method. However, for large x, b2
1st increases as 5x/3, which is actually worse than

the uncompensated system. In fact, for x greater than 12, first-order compensation at
the carrier frequency deteriorates the system performance relative to the uncompensated
case.
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Second-Order Compensation at the Carrier Frequency

In the second-order compensation at the carrier frequency, the total PMD vector is given
by �tot,2 = � − �(0) − �(1)(0)ω, where �(1)(0) denotes the first frequency derivative
of the PMD vector at the carrier frequency. The broadening factor is calculated as in the
previous cases [15]:

b2
2nd = b2

1st + x2

3
− 12

[(
1 + 2x

3

)1/2

− x

3

(
1 + 2x

3

)−1/2

− 1

]
(10)

From Equation (10) it can be seen that b2
2nd increases as 1+(8x3/27) for small x, so that

the PMD impairment is reduced further than the first-order compensation case. However,
for large x, b2

2nd increases as x2/3, which is actually much faster than the first-order
compensation and the uncompensated cases.

In fact, the PMD compensation approach based on the Taylor’s expansion of the fiber
PMD vector up to a certain order at a specific frequency does not work for large PMD-
to-pulse width ratios. In this case, the valid frequency range of the expansion is much
narrower than the signal bandwidth, and thus, the higher-order terms in the expansion
rather increase the error between the fiber PMD vector and the compensation vector over
the signal bandwidth. Since the higher-order term grows faster, a larger error will be
incurred as the order of the expansion increases.

Compensation with the Averaged PMD Vector

A better strategy is to use a compensating vector equal to the frequency average of the
higher-order PMD vector of the fiber in emulating the PMD vector. The compensation
PMD vector will be then in the form of �c = 〈�〉 + 〈�(1)〉ω + . . . .

In the first-order compensation, the total PMD vector is �1st = � − 〈�〉, and the
broadening factor turns out to be exactly equal to that given by the PSP method:

b2
1st = 1 + x − 3

2

[(
1 + 4x

3

)1/2

− 1

]
(11)

As observed previously, the squared broadening factor increases as 1 + x2/3 for small
PMD values, while for large PMD values increases as x.

In the case of the second-order compensation, the total PMD vector becomes �2nd =
� − 〈�〉 − 〈�(1)〉ω and the broadening factor is [15]:
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From Equation (12) it can be seen that b2
2nd increases as 1 + (2x3/9) for small x, so that

the PMD impairment is reduced further than the first-order compensation case. On the
other hand, for large x, b2

2nd increases as x. Therefore, the second-order compensation
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Figure 1. Average broadening factors, b, as a function of the normalized average DGD for the
uncompensated case (a), for different compensation schemes: first-order PMD cancellation at the
carrier frequency (b), second-order PMD cancellation at the carrier frequency (c), PSP or first-order
cancellation of the average PMD vector (d), and second-order cancellation of the average PMD
vector (e).

has smaller pulse broadening than the first-order compensation and the uncompensated
cases for all PMD values.

We conclude from the above results that the frequency average approach improves the
system performance even for large PMD-to-pulse width ratios. Furthermore, the second-
order compensation provides a better performance than the first-order compensation for
all PMD-to-pulse width ratios. However, as the PMD-to-pulse width ratio increases, the
PMD compensation asymptotically reaches the same slope as the uncompensated case.

The system performance is expected to be improved further by choosing optimal
compensation vectors rather than by using the frequency averages of the higher-order
PMD vectors of the fiber as expansion coefficient vectors in compensation. For example,
it was shown in [16] that the optimum first-order compensation vector is �c = 〈�o〉 +
[α2〈so〉/(1 − 〈so〉2)], where �o and so are the output PMD vector and the output SOP,
respectively, and α = 〈so〉 · 〈�o〉 − 〈so · �o〉. The resulting squared broadening factor
behaves as 1+(x2/9) for small PMD values, which represents an improvement compared
to the case �c = 〈�〉.

At the moment, a search for the expression of the optimum compensation vector for
higher-order compensation remains as a topic of research. The above results suggest that
the optimal coefficient vectors will be associated with the frequency average of the higher
order PMD vectors rather than the higher order PMD vectors at a specific frequency.

Figure 1 illustrates the calculated broadening factors, obtained from Equations (7)–
(12), as a function of the ratio of the PMD value to the initial rms pulse width, E{�τ }/τ0 =√

32x/3π . It can be observed that in the case of second-order PMD compensation at
the carrier frequency (curve c), the broadening factor increases rapidly and the system
performance is deteriorated for large PMD-to-pulse width ratios. However, if the com-
pensation is realized with the frequency averaged second-order PMD vector (curve e),
the system performance is effectively improved for all values of the PMD-to-pulse width
ratio.
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PMD Measurement

Several different techniques have been developed to measure the PMD in single-mode
fibers. These techniques are usually classified in two main groups: frequency domain and
time domain. In the frequency domain, the techniques include the wavelength scanning
method, the Jones matrix eigenanalysis, the interferometer method and the Poincaré arc
[17, 18]. In the temporal domain we find the pulse delay and the polarization phase shift
methods [18, 19]. Besides these transmission techniques, the PMD could also be derived
in the time domain from the analyses of the Rayleigh or Fresnel backscattered signal
from the fiber [20, 21].

The polarization phase shift technique has been widely adopted by the equipment
manufacturer for polarization-mode dispersion characterization. The great advantage of
this method resides in the similitude between this technique and the other one, named
modulation phase shift, largely used for chromatic dispersion characterization. Therefore,
the conjugation of these two techniques allows the integration on a single piece of
equipment the measurement capacity to characterize attenuation, phase, group delay,
chromatic dispersion, and PMD.

A wavelength scanning–based technique commonly used is the fixed analyzer method,
which relies on the measurement of the spectral transmission through a polarizer-fiber-
polarizer concatenation scheme. The transmission spectrum is analyzed either by counting
the transmission extreme or by applying a Fourier analysis. If the last polarizer is changed
by a polarimeter, information about the three normalized Stokes parameters is obtained,
providing a full description of the output polarization, over wavelength. The mean DGD
could be calculated from each one of these Stokes parameters. Using the three Stokes
parameters, the measurement accuracy can be increased by means of averaging. The rate
of rotation of the output state of polarization about the principal states axis is a measure
of the differential group delay of the fiber. The mean DGD, 〈�τ 〉, could be determined
by counting the extremes of each Stokes parameter curve [18, 22].

〈�τ 〉 = 0.824
Neλstartλend

2(λstart − λend)c
(13)

where λstart and λend are the limits of the wavelength sweep, Ne represents the number
of transmission extremes (peaks and valleys) that occur across the scan, and c is the
speed of light in a vacuum. This expression is valid for measurement on fibers with a
length longer than the beat length. In this situation we have Ne

Nm
→ 1.524, where Nm is

the number of crossings by the mean value (see [22]).
The measured standard deviation is given by:

σ

〈�τ 〉 ≈
√

0.5

Ne

(14)

The fixed analyzer method (with polarimiter procedure) was applied to determine the
DGD associated to a 20-km reel of single-mode (G.652) fiber. This procedure was them
used to determine the mean DGD for other fiber lengths (45 and 70 km).

It was considered a 100-nm scanning interval (1500 to 1600 nm) with a 1 nm-
wavelength step. The state of polarization at the fiber input was kept linear and constant
along all the wavelength sweeping. Figure 2 shows the normalized Stokes parameters
evolution obtained at the fiber output, represented over the Poincaré sphere. For better
visualization, these parameters are represented in a bidimensional form in Figure 3.
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Figure 2. Stokes parameters evolution along 100-nm wavelength scanning represented over the
Poincaré sphere for 20 km of G.652 fiber.

The situation previously analyzed fall in the long-length regime. Therefore, we can
refer to expression (1) to obtain the DGD, leading to a value of 0.1382 ps with a standard
deviation of 0.0250 ps. The same procedure was applied to other fiber lengths. Figure 4
illustrates the Stokes parameters evolution along 100-nm wavelength scanning for 70 km
of G.652 fiber.

Figure 3. Stokes parameters evolution along 100-nm wavelength scanning for 20 km of G.652
fiber. For all the Stokes parameters we have: Ne = 3, Nm = 2, Ne/Nm = 1.5.
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Figure 4. Stokes parameters for 70 km of G.652 fiber.

Figure 5. Mean DGD as functions of fiber length. Dots are experimental data, and the line is the
data fit using expression (13).
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The experimental values of the mean DGD were adjusted to a square root law
(Figure 5), and a PMD coefficient of 0.0518 ± 0.0057 ps/

√
km was obtained.

PMD Emulation

The statistical nature of the PMD effect [6, 8, 9] makes difficult to assess the PMD
compensators. If we use an installed communications system for this assessment we
will need to wait very long times to evaluate the emulator over a significant range of
DGD values. An accurate assessment of PMD compensators is only possible with a
PMD emulator system that presents the same PMD properties of the link and that could
quickly cycle through different DGD values. A PMD emulator make possible a fast and
versatile access to all possible DGD values, especially DGD values with low probability.
Nevertheless the statistics of PMD produced by an emulator should be related, in a known
way, with the real fiber statistics.

A Maxwellian pdf (see Equation (2)) of DGD is the first key performance that a
PMD emulator should meet. The emulator should also produce accurate higher-order
PMD statistics, at least up to the second order. Another aspect to consider is the PMD
autocorrelation function (ACF). This function presents a theoretical quadratic decay with
�ω (see Equation (6)), and this is another important performance that a PMD emulator
should meet. Ideally, the residual correlation should have values less than 10% for all
frequencies outside of a 0.2 nm bandwidth. On the other hand, to act as a practical mea-
surement tool, a PMD emulator should also exhibit features like stability, repeatability,
predictability, and simplicity.

Emulator Types

A real fiber is usually modeled by the concatenation of randomly coupled linear birefrin-
gence sections. In the same way, a device to emulate fiber PMD may be constructed by
the concatenation of several birefringence elements [23]. These birefringence elements
may be sections of polarization maintaining fiber (PMF), birefringence crystals, or other
devices that provide a differential group delay between the two orthogonal polarization
axes.

The main PMD emulators can be classified in to one of the five main emulator types:

Emulators with Fixed Orientation Sections

The PMD emulators with fixed orientations may be constructed by the concatenation
of several number of PMF sections [24, 25] spliced at fixed angles. A rigorous statistic
analysis of his results was only made theoretically. A computational simulation [24]
of an emulator with 15 equal length PMF sections, spliced randomly, generated a DGD
distribution well described by a Maxwellian distribution over an ensemble of frequencies.
However, these emulator types have strong limitations since only with wide varying
wavelength is it possible to obtain different PMD emulator states.

Emulators with Uniform Scattering of Polarization

This emulator type consists of placing polarization scramblers between the PMF sections
to uniformly scatter the polarization state over the Poincaré sphere. The uniform scatter
of the polarization is easy to model in a computer but hard to realize in practice where
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polarizations controllers are used. Simulation results of three different emulators, each
one with different number (three, five, and ten) of randomly PMF sections length, were
compared in [26]. The results showed that only with ten or more PMF sections is the
pdf of DGD well fitted by a Mawellian distribution.

Emulators with Rotatable Sections

In emulators with rotatable sections, the birefringence sections randomly rotate relative
to each other. Damask [27] constructed an emulator consisting of twelve equal-length
yttrium ortho-vanadate (YVO4) birefringence crystals mounted with twelve independent
and motorized rotation stages placed in cascade. First- and second-order PMD have been
well generated. However, all moving parts can affect emulator features like stability or
repeatability.

Two PMD emulators, with 3 and 15 PMF sections connected with rotatable connec-
tors, have also been constructed [28]. This technique makes it possible to easily generate
different fibers realizations, at any specific wavelength, by randomly rotating the connec-
tors. The results show that only with 15 PMF sections the emulator has DGD values in
good agreement with the Maxwellian distribution. The 15 PMF sections emulator also
exhibits good results in the autocorrelation functionACF of the PMD vector.

Emulators with Tunable Birefringence

Although there are reasonable results exhibited by the last two emulator types, they still
present some issues like cumbrous, relatively high losses or an insufficient automatic
control. An emulator with tunable birefringence sections, exploiting the temperature sen-
sitivity of PMF, was presented in [29]. This emulator exhibited reasonable results: first-
order PMD was well fitted with a Maxwellian distribution and measured second-order
PMD only differs from expected theoretical distribution in the low probability tail. The
ACF had higher residual correlation value (20%) comparatively with the 15 PMF sec-
tions connected with rotatable connectors emulator described above that have only 10%
of residual correlation. A possible way to solve these two issues is to increase the number
of PMF sections. The main advantages of this compact emulator over other emulators
are low loss, electrically controllable, no moving parts, negligible polarization-dependent
loss (PDL), and no internal reflections.

Emulators with Tunable Statistics

An emulator with tunable statistics presented by [30] makes use of three programmable
DGD elements separated by two fiber-squeezer-based polarization controllers. The DGD
elements consist of several birefringence crystals whose lengths increase in a binary
series separated by electrically driven polarization switches and can be programmed to
generate any desired DGD value [31]. Varying the DGD of each element according to
a Maxwellian distribution with average 〈�τ 〉 and uniformly scattering the polarization
between sections, a Maxwellian distribution with average 31/2〈�τ 〉 is yielded at the
emulator output. The experimental results show a possibility of accurately tuned PMD
statistics. The first-order PMD values are well fitted by a Maxwellian; however, the mean
of second-order PMD is about 30% lower than expected for a real fiber. Simulation results
reveal that with only fifteen or more DGD elements is possible to obtain an ACF with
residual correlation values lower than 10% [32]. Features like stability and repeatability
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are well achieved. Another advantage of this emulator is the possibility to experimentally
generate extremely low probability events, allowing the powerful technique of importance
sample to be applied.

An Emulator Based on Nonlinear Chirped FBGs

At the present we are developing a programmable group delay module using two nonlinear
chirped fiber Bragg gratings (FBGs) written into a high-birefringence fiber (hibi). The
large refraction index difference present in the hibi fiber makes with the Bragg refraction
from the chirped grating, for a given signal wavelength occuring at different locations
for different polarizations. The two signal polarizations “see” two different gratings due
to the birefringence. The position difference of the reflection produces a differential time
delay between the two polarizations, corresponding to first-order PMD [33].

The proposed architecture for our module is shown in Figure 6. The key elements
are the two polarization controllers (PC1 and PC2) and the two nonlinear chirped FBGs
(hibi FBG1 and hibi FBG2) written into a hibi fiber. The input signal enters in the PC1
in order to obtain a state of polarization parallel to the fast birefringence axis of hibi
FBG1. The PC2 ensure a correct coupling between the fast birefringence axis of hibi
FBG1 and the slow birefringence axis of hibi FBG2. In this configuration the two DGDs
generated at each grating are subtracted.

The DGD corresponding to hibi FBG1 has a constant value �τ1 ps and that corre-
sponding to hibi FBG2, has a tunable value �τ2(V ) ps. It can be continuously varied by
mounting the hibi FBG2 on a voltage-controlled piezoelectric element. The mechanical
stretching should induce a variation in the DGD between the two polarizations. If no volt-
age is applied to hibi FBG2 �τ2 has the same value as hibi FBG1 (�τ2(V = 0) = �τ1),
and in case of maximum voltage applied (related with the maximum stretch grating
support) hibi FBG2 has the value �τ2(v

m) = �τm2 . The total DGD generated by this
module, �τt , could take values from 0 to (�τm2 − �τ1) ps.

The precise and repeatable DGD generation capability of our DGD module will be
related with the rigorous parameters calibration of the curve �τ2(V ), which describes
the DGD variation with applied voltage. To any applied voltage in hibi FBG2 it should

Figure 6. Schematic diagram of the group delay module using two nonlinear chirped FBGs written
into a hibi fiber.
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correspond to a deterministically �τ2(V ) value and a respective �τt at the module
output. Eventual environmental perturbations, like temperature variation, will induce time
delay variations in both gratings, which means that the difference between them remains
constant. Developing the software tools necessary to control the DGD module should
make it possible to use to generate statistical DGD samples with a Maxwellian distribution
and a selectable average. By the concatenation of several modules like this separated by
polarization scatter, it should be possible to emulate second-order PMD.

PMD Compensation with an Electrical Equalizer

Electronic equalization is a well-established technique largely used in automatic phone
line equalization [34]. These same principles can also be applied to high-speed lightwave
transmission systems. Electronic dispersion compensation (EDC) has been reported to
overcome fiber dispersion in metro links [35]. Electrical filter–based devices are now
under deep study and are expected to have a significant impact at the high bit rate optical
link receiving edge. These devices are in general based on analog domain transversal
filters that are able to operate at higher bit rate signals (10 Gbit/s, 40 Gbit/s and potentially
above) [36, 37]. A major advantage of EDC is the possibility of electronic adjustment,
making it in principle possible to compensate for changes in receiver response or other
distortions due to ageing and/or temperature variations.

Inter symbol interference (ISI), due to chromatic dispersion (CD) and polarization
mode dispersion (PMD) are major impairments that affect pulse shape in high-speed
systems and should be mitigated. Monolithic microwave integrated circuit (MMIC) tech-
niques allow the realization of high-performance, reliable microwave circuits and are thus
suitable for implementation as filters in current high bit rate electro-optical transceivers.
The introduction of electrical noise can be stated as the main counter back when using
EDC in optical channel equalization.

Simple Electrical Equalizer Model

Figure 7 shows a simple Transversal Filter (TF) model. In the Synchronously Spaced
Equalizer (SSE) the incoming signal is delayed by one bit period per stage, while in the
Fractionally Spaced Equalizer (FSE) the delay is less then one one bit period. For high
speed systems the FSE is best choice in order to avoid aliasing in the equalized signal
[38]. Both configurations are known as feed-forward equalizers (FFEs).

The incoming signal is next tapped and weighted by stage coefficients, cn, that can
adaptively be changed so that the resulting filter response equals as much as possible the
inverse of the channel response.

Figure 7. Simple transversal filter (TF) model.
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A 10 Gb/s SiGe IC FFE comprising eight taps, aiming to compensate over 95 km of
standard single-mode fiber (SMF) was already tested [39]. Full DGD compensation was
reported for values up to 65 ps, while 3.4 dB of gain penalty reductions were measured
for DGD of 100 ps.

Recent studies on this topic show that some other filter structures derived from
the TF, namely the decision feedback equalizer (DFE), are capable of improving EDC
circuit performances. The DFEs are nonlinear filters that are able to cope with severe
signal distortions. This device gathers its knowledge from the previously detected bits
and adjusts the level on the decision block by subtracting the previous ISI from the
decision to be made. Series combination of FFE-DFE structures outperforms single FFE
and DFE electrical blocks, leading to an optimized operation [40].

For a 40 Gb/s systems, Nakamura [41] has recently reported for a 3 tap FFE-DFE
IC using InP/InGaAs HBT technology achieving 20 ps of DGD mitigation.

For the automatic change of the filter coefficients, zero-forcing (ZF), least mean
square (LMS) or other annealing techniques such as Metropolis algorithm annealing can
be fast enough to set coefficients value while monitoring received pulse shape. They are
effective with FFE, DFE, or even FFE-DFE structures.

Other digital equalizing processes like maximum likelihood sequence (MLS) ana-
lyzers are very robust for low data rate processing equalization [42]. Simplified versions
of its analog implementation are beginning to be used in high bit rate systems [40, 43].

PMD Mitigation

In this study we will only account for first-order PMD. Looking forward to establish
the EDC capabilities on PMD compensation, a numerical simulation was done, where
an FFE device with 5 coefficients and a tap delay equal to one third of the incoming
bit rate was considered after the photo-detector in the optical receiver. For coefficients
automatic updating, a simplex algorithm with the eye-opening height as state variable
was used [44].

In this work we numerically studied systems at two different bit rates, 10 and 40
Gb/s. In order to numerically consider the DGD, the signal is split and forced to follow
two distinct paths. The propagation time difference between the paths is given by �τ ,
which models the time difference between the fast and slow polarization axis. Due to
the random nature of the birefringence along the fiber, �τ increases proportionally to
the fiber length square root. The γ parameter governs the splitting process of the optical
power between both arms (see Figure 8).

Figure 8. First-order PMD numerical emulator.
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The fiber transfer function, given by

Hfiber(f ) = exp

(
j
πDLλ2f 2

c

)
(15)

was implemented in both arms of the emulator of Figure 8. In Equation (15) the product
DL states for the total chromatic dispersion in ps/nm, D being the dispersion and L the
total length of the system. We considered several distances and in all cases we assumed
D = 17 ps/nm/km.

The output optical signal is then amplified to completely compensate for the optical
losses. Amplification spontaneous emission (ASE) noise is added to the signal leading
to an optical signal-to-noise ratio (OSNR) at the receiver input of 13 dB, measured over
0.1 nm and 0.34 nm of optical bandwidth for 10 Gbit/s and 40 Gbit/s rates, correspond-
ingly. After photo-detection, modeled as a square law device, adaptive EDC is finally
performed. An electrical noise factor of 10 dB for the EDC filter was considered.

The splitting ratio, γ , is the relative power traveling in the fast axis, while slow axis
optical signal is delayed by �τ (ps). When γ equals one, we have all-optical power
traveling through the fast axis. By the opposite way, when γ equals zero, all-optical
power is considered to travel through the slow axis. A ratio for fast to slow axis relative
power of 0.7/0.3 or even 0.5/0.5 are usually stated, giving this last ratio the worst overall
power penalty.

(a)

Figure 9. EDC numerical results for a 512 bits NRZ PRBS over an SMF link. The splitting ratio
considered in the numerical PMD emulator was 0.7. Figure 9a refers to a 10 Gbit/s system.
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Since signal quality evaluation methods, based on the Q-factor, are not so reliable
when strong ISI is present, an eye-opening penalty (EOP) ratio was defined by

EOP = −10. log

(
H

Href

)
(dB) (16)

where Href states for the eye-opening in a back-to-back configuration and H is the
eye-opening measured after the signal had crossed the link.

Simulations were carried out for two different scenarios. The first scenario, “without
PMD,” means considering only the CD in the link. In the second scenario, “with PMD,”
CD and PMD were both considered. The first scenario is used as a reference point.
Systems operating at 10 and 40 Gb/s were simulated and the results are presented in
Figure 9.

By looking at Figure 9a we see that FFE is able to fully compensate for roughly
65 ps of DGD for a 10 Gb/s SMF link while showing an EOP improvement of 4 dB at
100 ps of DGD. These results are quite similar to those reported by Cariali et al. [39].
In Figure 9b, analogous results are presented for a 40 Gb/s link. In this case, 16 ps of
DGD are fully compensated while achieving 4 dB of improvement in the EOP for 24 ps
DGD after 1 km of SMF. In extreme signal detection conditions, after 7 km of SMF at
40 Gb/s, we may also see that an EOP improvement of 16 dB is theoretically possible

(b)

Figure 9. EDC numerical results for a 512 bits NRZ PRBS over an SMF link. The splitting ratio
considered in the numerical PMD emulator was 0.7. Figure 9b to a 40 Gbit/s system.
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for a 21 ps DGD. Nevertheless, in practice, difficult signal detection may be experienced
with such a high level of impairment.

Dynamic Optical PMD Compensation

The dynamic PMD compensation in the optical domain is always based on the same
principle: inducing a relative delay of one transversal polarization component of the
fundamental propagation mode in relation to the orthogonal one. One of the approaches
for optical PMD compensation is based on free-space optics [45]. The idea is to separate
the two polarization components by a polarization-beam splitter in free-space optics.
Before getting combined again in the fiber, each polarization component travels a different
path, which induces different delays for each one. The tuning process is made by changing
one of the optical paths. However, this method has all the inherent difficulties of free-
space optics such as alignments or reflections. Other approaches use the temperature
tuning of small lengths of highly birefringent (hibi) fibers [46], but the process lacks
speed and flexibility.

One of the most promising techniques for dynamic compensation of the PMD is
using chirped fiber Bragg gratings (CFBG) written in hibi fibers. In these fibers, the
x- and y-components of the degenerated LP01 mode have different refractive indexes.
Therefore, a hibi FBG will reflect two different wavelengths with orthogonal polarization.
The wavelength difference between the two peaks is dependent on the birefringence of
the fiber (B) and can be given by

�λHB = 2B+ (17)

If the grating has a nonlinear chirp [47], the group delay is composed of two parabolic
functions (one for each polarization) shifted by �λHB. If the grating is tuned by tempera-
ture or longitudinal stress, the relative induced delay between the orthogonal polarizations
for a specific wavelength will change. Figure 10 shows a simulation of a quadratic CFBG
written in a hibi fiber with a birefringence of B = 5 × 10−4 where two different relative
delays can be observed at 1550 nm, just by tuning the grating.

In a linear CFBG written in a hibi fiber, each position in the grating will reflect
two wavelengths at orthogonal polarizations. This means that the group delay of these
gratings is a combination of two linear functions, one for each polarization, with the
same slope (m) and shifted by �λHB:

τy(λ) = mλ + b

τx(λ) = m(λ − �λHB) + b
(18)

Here, it is assumed that the y polarization is the fast axis, so the reflection spectrum
corresponding to y polarization is at lower wavelengths than the one corresponding to
x polarization. So, the relative group delay induced by a linear CFBG written in a hibi
fiber (�τ = τx − τy) is calculated as

�τ = −m�λHB

= −2mB+
(19)

Expression (19) shows that the dynamic tuning of the induced PMD can be made by
adjusting the birefringence of the fiber [48] or by adjusting the dispersion slope of
the grating.
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Figure 10. Group delay of a quadratic CFBG written in a hibi fiber for different central wave-
lengths. Solid: y polarization; dashed: x polarization.

Experimental Results

Since a linear CFBG is easier to write, we have developed a tunable PMD compensator
based on dynamic tuning of the dispersion slope. A uniform fiber Bragg grating was
written in a hibi fiber with 24 mm length using a scanning beam from an Ar-ion laser
frequency doubled by a BBO crystal to 244 nm. The grating was inserted in a zinc
substrate, which has a high thermal resistance. On each side of the Zn channel, a peltier
forces a constant temperature. With this, different temperature gradients can be achieved
by changing the individual temperatures on the peltiers. The grating was isolated from the
air to avoid temperature deviations and heat loss due to convection. Since the substrate has
a constant width and height along its length, the temperature gradient is linear; therefore,
it induces a linear chirp on the grating, which depends on the difference of temperature,
�T , between the two peltiers. Figure 11 shows the reflection spectra of the grating under
different temperature gradients.

The spectrum broadening due to the induced chirp as the temperature difference
increases is quite visible. At �T = 10◦C, the two peaks at orthogonal polarizations
are still separated. When �T is increased to �T = 30◦C the two peaks are starting
to overlap. The delay between x and y polarizations can be tuned for any wavelength
in the overlap region by adjusting the dispersion slope (which depends on �T ). The
group delay between the two orthogonal polarizations, at 1544.75 nm, was measured for
different temperature differences. The results are displayed in Figure 12.

The group delay between the two orthogonal polarizations was tuned between −35 to
110 ps for temperature gradients between 0 and 50◦C, respectively. After �T = 10◦C,
the two orthogonal peaks start to overlap, increasing the group delay between x and
y polarizations. It is also possible to see that the evolution is quite linear with the
temperature gradient increase, which simplifies the implementation in a prototype with
feedback architectures. The results show that it is possible to compensate the PMD with
an induced temperature gradient in a uniform fiber Bragg grating written in a hibi fiber.
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Figure 11. Reflection spectra of an FBG written in a hibi fiber with two induced temperature
gradients: �T = 10◦C and �T = 30◦C.

Figure 12. Difference in group delay between the two orthogonal polarizations for different applied
temperature gradients.
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Conclusions

In this article we presented a review of recent research related to polarization-mode dis-
persion in high-speed fiber-optic transmission systems. The basic theory of PMD, as well
as some PMD compensation methods, were analyzed and compared, considering partic-
ularly the issue of pulse broadening. The problem of PMD measurement was discussed
and some results obtained using the fixed analyzer method were presented. Due to the
statistical nature of PMD, it is difficult to assess the performance of a PMD compensator
in a real fiber communication system. A PMD emulator makes possible such assessment
and a review of the main PMD emulator types was presented. Moreover, a novel em-
ulator was proposed based on two nonlinear chirped fiber Bragg gratings written into
a high-birefringence (hibi) fiber. Some PMD compensation techniques were reviewed
and discussed. In particular, an electrical equalizer able to adaptively compensate up to
65 ps and 16 ps of DGD for 10 Gb/s and 40 Gb/s, respectively, was described. Improved
performances may be expected as advanced high-speed electronic processing techniques
become available. Dynamical optical compensation using chirped fiber Bragg gratings
written in high-birefringence fibers was also demonstrated. The obtained experimental
results show that it is possible to compensate the PMD with an induced temperature
gradient in a uniform fiber Bragg grating written in a hibi fiber.
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