
A Statistical Model for the Average Number of Hops in Optical Networks

Claunir Pavan1,2, Abel R. P. Correia2, Armando Nolasco Pinto1,2

1Institute of Telecommunications, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Phone: +351 234 377 900, Fax: +351 234 377 901.
2University of Aveiro, Department of Electronic, Telecommunications and Informatics, Campus Santiago, 3810-193 Aveiro, Portugal

Phone: +351 234 370 355, Fax: +351 234 381 128,

e-mails: pavan@av.it.pt, a12129@alunos.det.ua.pt, anp@det.ua.pt

Abstract—With the aim of approaching the optical networks dimen-

sioning problem in a semi-analytical way, we present a statistical model

for the average number of hops in the context of optical networks. The

input parameters for the model are the number of nodes and links. From

the number of nodes and links the probability function for the average

number of hops is obtained. The model uses extensive computational re-

sources to obtain the probability function. Therefore it is also performed

an assessment of the problem in terms of computational cost.

I. INTRODUCTION

The dimensioning of optical networks is frequently ad-

dressed using extensive numerical processing. We aim to pro-

vide semi-analytical tools for the dimensioning problem. We

expect to obtain solutions with less time consumption and to

gain a deep insight on the dimensioning problem. This ap-

proach was firstly, as far as we know, introduced in the context

of optical networks by Korotky in [1]. This paper intends to be

a contribution in that way.

A telecommunication network must be dimensioned in or-

der to support a given traffic demand, or traffic demand ex-

pectation, minimizing the expenses with capital equipment

(CAPEX), network operation (OPEX) and network manage-

ment (MANEX). This is frequently a difficult task due to the

size and complexity of the network. Furthermore, in the di-

mensioning problem frequently some decisions must be taken

without a complete knowledge of all the variables involved.

This work also addresses this last aspect, taking decisions with

incomplete information. In our case we consider that we do

not know the network topology but we only know the number

of nodes N and links L. Therefore the average number of hops
is an unknown variable. However, as we are going to show, a

statistical model can be built for the average number of hops.

Given the number of nodes and links, the network topology

can be arranged on several ways. For each topology the average

number of hops can be computed. In this paper we present both

a numerical solution for the problem and a computational time

consumption model.

The complexity of an algorithm is measured in running time,

storage, or whatever units are relevant[2]. In our case the rel-

evant aspect is the running time, thus we expect to obtain an

estimation for the running time as function of the number of

nodes and links, our input parameters. We used an algorithms

analysis based on an asymptotical approach.

This work was partially supported by the Portuguese Scientific Founda-
tion FCT, through the “IP over WDM Networks” project (POSI/EEA-
CPS/59566/2004), FEDER and POSI programs.

In this paper, we present a numerical solution to solve three

problems. Given an N number of nodes and L links, we calcu-

late the number of connected graphs, i.e. all possible networks

with N nodes and L links where it is possible to define a path

between each node pairs. For each connected graph we cal-

culate the average number of hops required to interconnect all

nodes. We also calculate the probability function for the aver-

age number of hops.

In section II, we present a model for an optical mesh network

and clearly formulated our problem. In sections III and IV, we

present a solution and a model for the computational consump-

tion time. Finally we finish this work with a discussion of the

main results, section V.

II. OPTICAL MESH NETWORK

A network is formed by a set of nodes and a set of links,

where the nodes are connected through the links. A network

topology can be modeled as a graph G(N,L), where N is the

number of nodes and L is the number of links. A graph can

be represented by an NxN adjacency matrix [g]. The ma-

trix elements gij are either 1 or 0, respectively, when a pair

of nodes is directly connected or not. The summation of all the

values of [g] yields the number of one-way links, L1, which

is twice the number of two-ways links, L = L1/2. In this

work we assume full-duplex links, therefore the [g] matrix is

always symmetrical. For a connected graph it is necessary at

least N − 1 links and the maximum possible number of links

is Lmax = (N2−N
2

).

Fig. 1: A four nodes network is represented, in (a) with a minimum number of

links and in (b) with a maximum number of links.

The number of hops between a pair of nodes is defined as the

number of links traversed by a demand between the node pair,

this number is dependent of the routing discipline. In this work

we assume a minimum hops routing discipline. Dijkstra’s al-

gorithm allows us to determine the minimum number of hops.

From each topology matrix [g] we obtain a [s] matrix. Each

element of [s], sij , is the minimum number of links used to

interconnect the nodes i and j. Having the [s] matrix, that rep-
resents the minimum number of hops between each node pairs

(i, j) we can obtain the mean number of hops,

465



〈s〉 =
1

2Lmax

N
∑

i=1

N
∑

j=1

sij . (1)

Let’s consider the example presented in figure 1(a). For this

topology the following [s] matrix is obtained,

[s] =









0 1 1 2
1 0 2 3
1 2 0 1
2 3 1 0









,

and using (1) we obtain 〈s〉 = 1.67.
For a givenN andL and using the general formula for calcu-

lating combinations without repetition, the number of all pos-

sible graphs is given by

C =
Lmax!

L! (Lmax − L)!
. (2)

For the case of N = 4 and L = 3 we have 20 possible

topologies, but there are 4 invalid because they are discon-

nected graphs, see figure 2.

Fig. 2: All possible ways to arrange four nodes and three links, topologies 3,

9, 13 and 17 are not valid - disconnected graphs.

Performing (1) to all valid topologies, which are 16, we ob-

tain only two values for 〈s〉, which is quite a surprising result,
(〈s〉 = 1.5 and 〈s〉 = 1.67), as we can see on figure (3). The
probability of 〈s〉, P〈s〉, is shown in figure (4).

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Connected Graphs

<
s
>

Fig. 3: In the xx´ axis are represented the 16 valid graph (see Fig. 2), counted

row by row from the upper left corner to the bottom right corner, and in the

yy´ axis are represented the average number of hops for each valid graph.

In conclusion our problem consists in the determination the

probability function of 〈s〉, P〈s〉.

0

10

20

30

40

50

60

70

80

90

100

1.5 1.67
<s>

P
<

s
>

(%
)

0

2

4

6

8

10

12

14

16

V
a

lid
 S

o
lu

ti
o

n
s

Fig. 4: Probability of 〈s〉, for the example considered in Fig. 2

III. NUMERICAL SOLUTION AND TIME

CONSUMING MODEL

In order to solve numerically the proposed problem and to

forecast how much computational time is required, we wrote a

program in C++ and compiled it using the GNU C compiler.

To estimate the processing time, we first estimate the number

of cycles the algorithm performs.

The program has basically three main parts, the first is a

combinatorial function which determines all the combinations

with N nodes and L links, next is the validation of the combi-

nation process which consists on verifying whether or not all

nodes are considered. The third part is a function that find out

the shortest path - in number of hops - where we can also verify

whether the graph is connected or not.

In the context of algorithms for computers, the symbol

Ω(Omega) is used to express the thought that a certain cal-

culation takes at least so-and-so long to do, and the symbol

O(Big − Oh) is used to describe an asymptotic upper bound
for the magnitude of a function[2]. To generate all the combi-

nations the program uses a bit vector with the STL (Standard

Template Library)[3] iterators classes that runs in Ω(1) when
only one bit is changed and O(L) otherwise. A function starts

with a vector of size Lmax and each position is represented by

an ordered pair i, j of nodes where a link can be activated or

not. A bit vector is also defined with size Lmax and its posi-

tions hold 1 or 0 consonant the link is activated or not, each

combination of the bit vector represents a network and consid-

ering (2) the lower and upper bound complexities to all combi-

nations are respectively Ω(C) and O(C × L).

Some networks are invalid because at least one node is not

considered in the combination, see figure 2, therefore, the pro-

gram also performs a binary search on each combination and

the complexity of this part is Ω(L), when the nodes are in

sequence and in the beginning of the combination vector, or

O(N × log(L× 2)) in the worst case.

Note that the presence of all the nodes does not mean a con-

nected graph, combinations that generate forests should also be

discarded, see figure 5.

Fig. 5: An invalid topology - forest.

466



To detect the cases showed on figure 5 the program verifies

whether all the nodes are reachable, for this, we use the Dijk-

stra’s algorithm, which given a graph finds out the shortest path

between the nodes. The use of Fibonacci heaps improve the

asymptotic running time of Dijkstra’s algorithm for computing

shortest paths in a graph, F-Heap is a heap (priority queue) data

structure similar to a binomial heap but with a better amortized

running time [4]. It runs in Ω(N2−N
2

) when the graph is com-
plete and in O(L + Nlog(N)) in the worst case.
We have implemented the Dijkstra’s algorithm with F-heaps

and the function returns a boolean variable indicating whether

the graph is connected or not. However, there are a function

that runs previously to prepare the data for the Dijkstra’s algo-

rithm function, the complexity of this function is O(L × 2),
then, using the costs presented previously, we can show the up-

per bound cost to the number of valid combinations as

Tcup ≈ C × [L + Nlog(2L) + 2L + (L + N)log(N)] , (3)

which may also be written as

Tcup ≈ C × [3L + Nlog(2L) + (L + N)log(N)] . (4)

The lower cost can be written as

Tclw ≈ C ×

[

L + (2L) +

(

N2 −N

2

)]

, (5)

which may be rewritten as

Tclw ≈ C × [3L + Lmax] . (6)

In order to measure the algorithm efficiency, we frequently

make use of the time the program takes to process something

in function of the input data [2]. For our tests, we run a bench-

mark program to obtain the number of operations floating point

per second of a single-CPU Pentium-IV, 3.2 GHz, with 1024

MB of physical memory and Linux operational system with

kernel 2.6.8-2-386. The value obtained was 3149000 flops. We

consider that the time required to perform each instruction of

the algorithm is equal to the time required to perform a float-

ing point operation. Therefore, to obtain the cost in seconds,

we divided the number of operations by the number of floating

point operations performed per second.

Table I: Results for N = 9 nodes and L = 18 links

〈s〉 Connected graphs P〈s〉
1.56 98.342.151 0.037722

1.58 991.693.929 0.380398

1.61 455.270.760 0.174634

1.64 976.117.744 0.374423

1.67 42.571.872 0.016330

1.69 30.602.880 0.011739

1.72 5.656.140 0.002170

1.75 2.031.120 0.000779

1.78 3.479.112 0.001335

1.81 45.360 0.000017

1.83 1.058.400 0.000406

1.86 7.560 0.000003

1.89 113.400 0.000043

1.94 3.024 0.000001

IV. EXPERIMENTAL TESTS AND RESULTS

Initially we defined a set of three networks, with N =
{7, 8, 9} nodes respectively. For each network we considered
all possible values for L, note that N − 1 ≤ L ≤ Lmax, which

for our samples yields 67 experiments. In order to obtain the

time spent to process each experiment we used the function

getrusage() of the sys/time.h library. Figures 6 and 7 show

some of the results obtained. In table I we present the results

obtained for the case of N = 9 nodes and L = 18 links.

0

2

4

6

8

10

12

14

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Links (L)

T
im

e
(s

)

upper bound

lower bound

measured

Fig. 6: Comparative lower bound, upper bound and measured time for all

networks with N = 7 nodes.

0

250

500

750

1000

1250

1500

1750

2000

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Number of Links (L)

T
im

e
(s

)

upper bound

lower bound

measured

Fig. 7: Comparative lower bound, upper bound and measured time for all

networks with N = 8 nodes.

V. CONCLUSIONS

In this paper, we presented a numerical solution for the prob-

lem of the average number of hops in the context of optical

networks. It was also presented a model for the computational

time required to solve the problem. We found for sparse and

dense graphs the problem is easily computable, graphs with

mean nodal degree in range of 3 and 4.5 increase the number

of combinations strongly and demands a lot of computational

time. In future works we intend to introduce constraints to the

problem (to eliminate the isomorph graphs, to indicate a mini-

mum nodal degree and/or maximum diameter) with the aim of

decrease the number of graphs to be submitted to the functions

and consequently the process time. However, here, the exper-

imental results are between the bounds determined using the

theoretical model, showing a good agreement between experi-

mental results and theoretical predictions.

REFERENCES

[1] S. K. Korotky, “Network Global Expectation Model: A Statistical For-
malism for Quickly Quantifying Network Needs and Costs”, IEEE/OSA
Journal of Lightwave Technology, vol.22, NO. 3, March 2004.

[2] T. H. Cormen, C. E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms, 2.ed. Cambridge: MIT Press and McGraw-Hill, 2001.

[3] R. O. Robson, LinkUsing the STL: the C++ standard template library.
New York: Springer, 1998.

[4] M. L. Fredman, R. E. Tarjan, “Fibonacci Heaps and their uses in Improved
Network Optimization Algorithms”, JACM Journal of the ACM vol.34
NO.3, pp. 596-615, July, 1987.

467


