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Abstract
1— A detailed study of the relation between the 

polarization controller angles and its respective polarization 

scattering properties is presented. First, it is shown that to 

transform between any two states of polarization the 

polarization controller angles must be allowed to change, at 

least, between - /4 and /4. After, it is demonstrated that using a 

concatenation of three polarization controllers, with angles 

randomly changed between - /4 and /4, a uniform polarization 

scattering over the Poincaré sphere is obtained. Finally, it is 

analyzed the influence of the configuration angles range and the 

number of polarization controllers in the scattering properties. 

I. INTRODUCTION

A device or a concatenation of devices, with the ability to 

produce a uniform polarization scattering over the Poincaré 

sphere can be useful in the development of polarization mode 

dispersion (PMD) emulators. Indeed, some authors have 

proposed PMD emulators, based on pieces of polarization 

maintaining fibers, interconnected with uniform polarization 

scattering devices [1]-[3]. The fiber-coil based polarization 

controller [4] can be used to scatter the state of polarization 

(SOP) over the Poincaré sphere. In this work, the main 

scattering properties of this device are analyzed. In particular, 

it is analyzed the influence of the waveplate angles range in 

the scattering properties. 

II. THE SMALLEST WAVEPLATE PC ANGLES RANGE

The polarization controller (PC) used in this work is 

schematically represented in Fig. 1. It results from the 

concatenation of two quarter-waveplates (QWP) and one 

half-waveplate (HWP), with the last one placed between the 

other two. To transform an arbitrary input SOP into an also 

arbitrary output SOP we can do the follow: 1) use the first 

QWP to transform the input SOP into a linear SOP; 2) use 

the HWP to change between two linear SOPs; 3) use the 

second QWP to convert the linear SOP into the desired 

output SOP. In the following, it is derived the smallest range 

of waveplate angles, to transform between any given input 

and output SOP using the method previously described. It is 

also analyzed the scattering properties of this device 

considering different angles ranges for the waveplates. 
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Fig. 1. Schematic representation of the three waveplate polarization 
controller. 

The presented derivation is based on the analysis of the 

SOP evolution between successive waveplates. The input and 

output SOPs can be represented, respectively, by the two 

following Stokes vectors 

1 2 3
ˆ [( ) , ( ) , ( ) ]Ti i i is s s s           (1) 

and

1 2 3
ˆ [( ) , ( ) , ( ) ]To o o os s s s          (2) 

where T indicates the transpose. In the same way, the SOP 
after the first and second waveplates (see Fig. 1) can be 
written, respectively, as 

1 2 3
ˆ [( ) , ( ) , ( ) ]Tj j j js s s s           (3) 

and

1 2 3
ˆ [( ) , ( ) , ( ) ]Tk k k ks s s s .          (4) 

The SOP after the first waveplate, ˆ
js , is a function of the 

input SOP, îs , and of the first waveplate angle, 1 . The 

respective Stokes vector is [1] 

2
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As we are looking to a linear SOP after the first waveplate, 

the third component of ˆ
js  should vanishes, which gives the 

following expression for 1 ,
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Note that when  equation (6) is not defined. 

This means that for this particular case, and independently of 

the first waveplate angle, 

ˆ [0,0, 1]Tis

ˆ
js is always linear. From (6), we 

also observe that to change between an arbitrary input SOP 

and a linear SOP, 1  must be allowed to take values between 

at least / 4  and / 4 . Under the condition present in (6), 

ˆ
js  can be written as: , where X and Y are 

given by,

ˆ [ , ,0]Tjs X Y

2
1 1 2 1

3 1

( ) cos (2 ) ( ) cos(2 )sin(2 )

( ) sin(2 )       

i i

i

X s s

s

1       (7) 

and
2

1 1 1 2

3 1

( ) cos(2 )sin(2 ) ( ) sin (2 )

( ) cos(2 )      .

i i

i

Y s s

s

1      (8) 

In a similar way, the linear SOP at the end of the second 

waveplate, the HWP, can be represented as s W :

note that the two non null vector components, W and Z, are 

functions of the output SOP. The two linear SOPs, 

ˆ [ , ,0]Tk Z

ˆ
js  and 

ˆ
ks , are related by the following HWP-induced SOP rotation, 

2 / 2 2
ˆ ˆ( ) ( )k js sR M R          (9) 

where the matrices 
2

M  and R represent, in the Stokes 

space, the HWP and its principal axes orientation [1], 

respectively. After matrices multiplication, (9) can be written 

as:

2
2 2

2
2 2 2

(2cos (2 ) 1) 2cos(2 )sin(2 )

2cos(2 )sin(2 ) (1 2cos (2 ))

0 0

2X YW

Z X Y . (10) 

Using the two first equations of (10), the HWP angle, 2 ,

can be expressed as a function of X, Y, W and Z,

2

1
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2

Y Z

X W
.         (11) 

Analogously to 1 , also 2  must be allowed to take values 

between / 4  and / 4 . Note that, in this case, the 

waveplate angle is a function of both input and output SOPs. 

The SOP after the third waveplate, ˆ
os , is obtained applying 

the rotation matrices 3 / 4 3( ) ( )R M R  to ˆ
ks , where 

4
M

represents the QWP, 

2
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The expression for the third waveplate angle is obtained 

using the two first equations of (12), and solving them in 

order to 3 ,
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Using the first and third equations of (12), in conjugation 

with (13), the following expression is founded to W,

2
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In the same way, using the second and third equations of 

(12), in conjugation with (13), the following expression is 

founded for Z,
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With the help of these two equations, (14) and (15), the three 

waveplate angles can be, explicitly, represented as functions 

of the input and output SOPs. From (6), (11) and (13) we 

conclude that to transform an arbitrary input SOP into an also 

arbitrary output SOP the three waveplate angles must be 

allowed to change at least in the range / 4  to / 4 . We 

also conclude that, following the three steps method 

(arbitrary input SOP, linear SOP, linear SOP and arbitrary 

output SOP), this is the smallest waveplate angles range to 

perform the change between any two SOPs. 

III. POLARIZATION SCATTERING

To scatter the SOP a concatenation of several PCs is 

considered. The SOP at the nth PC output, 1
ˆ
ns , is related 

with the SOP at the nth PC input, ˆ
ns , by the following 

expression,

1
ˆ
n

ˆ
ns sF .               (16) 

The matrix 1, 2, 3,( , ,n n n n )F  represents the nth PC (see Fig. 

2), resulting from the concatenation of three waveplates 
(QWP – HWP – QWP) with principal axes orientation given 

by 1,n , 2,n  and 3,n .

Fig. 2. Schematic representation of a concatenation of n PCs and respective 
input and output SOPs. 

PC 1

1
ˆ
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ˆ ˆ
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We are going to assume that the PC angles are randomly 

changed, following a uniform distribution between 4m

and 4m , where m is a positive integer number. We are also 

going to assume that the change is independent between the 

angles of waveplates of the same PC and between the angles 

of waveplates of different PCs. Therefore, the average value 

of the F matrix elements, ijf , will be equal for all the n PCs 

and will be hereafter designated simply by ijf . The 

average values of the F matrix elements, calculated as in [1], 

are

12 2 1( 1) 2[ ; ]
4 4

4

( )
m

i
ij i j

m m
f

m
,    (17) 

where ij  is the Kronecker delta. Note that  only 

vanishes if m is an even number. When m is an odd number, 

 do not vanish, but converges to zero as m increases: 

this evolution is graphically represented in Fig. 3. 
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Fig. 3. Evolution of the f22 mean value as function of the parameter m

(marks). Solid line represents the evolution of f22 mean value when m is an 

odd number. 

Using (17) into (16), and using (16) iteratively for an 

arbitrary initial SOP , the mean

values of the Stokes vector components, at the end of the nth

PC, , are obtained, 

1 1 1 2 1 3 1
ˆ [( ) , ( ) , ( ) ]Ts s s s

1
ˆ
ns

1
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1 1
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( )( ) 0

4

0
4

( ) 1 1
( )

0

                             

m

i

m

n

n n

n m m

n

s

s s

ms

s
m

    (18) 

where m defines the width of the waveplates angle variation 

range. On the other hand, all mean square values of the 

Stokes vector components are independent of m, and are 

given by [1] 

2

1 1

2

2 1 0

2

3 1

( ) 1 1 1
1

( ) 1 1 1
3 4

( ) 1 2 0

-

-

n

n nn

n

s
a

s b

s

     (19) 

where a and b are functions of the initial SOP, 1̂s ,

2

3 1

1 1
( )

2 3
a s            (20) 

and

2

1 1 2 1

1
( ) ( )

2
b s s 2 .          (21) 
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Fig. 4. Variances evolution as function of the number of concatenated PCs, 

(a) m=1; (b) m=2. Analytical values are represented as lines, whereas 

simulated values are represented as symbols. 

The variances for each Stokes vector component, at the end 

of the nth PC, are given by 

2
2 2

1( ) ( ) ( )i i n i ns s s 1 .     (22) 
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In Fig. 4(a) and Fig. 4(b) are represented, respectively, the 

variances for the cases m=1 and m=2, considering a 

particular initial SOP . In both cases the 

variance converges to the value 1/3: this is the theoretical 

value for a uniform distribution of SOPs over the Poincaré 

sphere. Note that, if we have a uniform distribution of points 

over the Poincaré sphere, each Stokes vector component has 

a uniform distribution between -1 and 1 [1]. From (18) and 

(19), in conjugation with the results presented in Fig. 4, we 

can conclude that the best waveplates angles range to scatter 

the polarization is 

1̂ [0,1,0]Ts

/ 2  to / 2 . In this case all mean 

values  vanish and  converges rapidly 

to the 1/3 value when the number of PCs increases. 
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Fig. 5. (a) Poincaré sphere representation of the output SOPs for an initial 

SOP , n=4 and m=2; (b) sum of Stokes vector component 

distribution NDFs as function of the PCs number. Inset shows the plot in a 
normal scale. 

1̂ [0,1,0]Ts

In order to validate the theoretical results, with respect to 

the influence of waveplate angles range on the scattering

properties, we have simulated 50000 SOP scatterings. A 

concatenation of four PCs, with m=2, and an initial SOP 

 were used to obtain each SOP. As represented 

in Fig. 5(a), a good uniform distribution of points over the 

Poincaré sphere is observed. To quantify the influence of the 

number of PCs, n, and the angles range parameter, m, on the 

uniformity of the scattering we calculate, for each Stokes 

vector component distribution,

1̂ [0,1,0]Ts

( )isp , a Normalized Deviation 

Factor (NDF) [2]. In Fig. 5(b) is represented the sum of the 

three Stokes vector component distribution NDFs as function 

of the concatenated PCs number, for the cases m=1 and m=2.

Results show that with m=2 uniform distributions can be 

achieved using a lower number of PCs, when compared with 

the ones obtained with m=1. Nevertheless, for six or more 

concatenated PCs we observe that the uniformity degree of 

the obtained distributions is similar. 

IV. CONCLUSIONS

To transform the light state of polarization between any two 

polarization states, using a PC device, the configuration 

angles must be allowed to change at least between / 4

and / 4 . By changing randomly the configuration angles 

between / 4  and / 4  it is possible to obtain a uniform 

polarization scattering concatenating at least three PCs 

devices. A slightly improvement in the scattering properties 

can be obtained if the configuration angles are allowed to 

change between / 2  and / 2 .
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