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Abstract — The dimensioning of a multi-layer optical
network is a complex problem, frequently addressed using
extensive numerical processing. We aim to provide semi-
analytical tools for the dimensioning problem. We expect to
obtain less time consumption solutions and to gain a deep
insight on the dimensioning problem. In this paper, we
present a set of three sub-problems on combinatorial and
probabilities with applications on design of multi-layer
optical networks. The first sub-problem is the generation of
all combinations of topologies, given a number of nodes and
links, where there is connectivity among all the nodes; the
second sub-problem is the determination of the amount of
different average spans for all valid topologies; the third
sub-problem is the calculation of the probability of each
average value.

Keywords — Optical networks, dimensioning, graphs theory,
combinatorial, probabilities.

[. INTRODUCTION

The dimensioning of optical networks are a very active
research area due to the grown of bandwidth demand and
the new functionalities that the optical layer can provide [1-
3].

In the dimensioning problem the bandwidth demands must
be satisfied. Besides that, expenses with capital equipment
(CAPEX), network operation (OPEX) and network
management (MANEX) must be minimized.

An optical network multi-layer is characterized by allowing
routing in the optical layer. The topology is a set of paths
which support the traffic demands. The determination of
network architecture for multi-layer optical networks and
theirs costs can be done using applications programs that
support the analysis. The analysis must be done carefully
while minimizing the cost and satisfying some objective
functions [4].

The problem of the choice of a topology for a network
within several possibilities can be solved by using either an
exact or heuristic algorithm. The first is usually only used
for small networks because the complexity and demand for
computational capacity increases exponentially with the

number of nodes in the network. The second does not make
the optimal solution, but it is usually simpler and faster.

We understood that semi-analytical methods are the most
appropriate way for the treatment of large network cases,
because it can bring results in smaller time than the
numerical methods. The analytical results are of addition
importance by the fact that they can provide a deep insight
in the problem. Frequently, this forms the basis for decision
making. Unreliable results bring a risk of incorrect decisions
and may lead to high costs.

Our goal regarding the utility and character of the problem
has been to permit results to be computed very fast with
useful accuracy for a very wide range of networks sizes and
thereby to provide valuable understanding and guidance.

In this paper, we formulated three sub-problems of the
dimensioning problem in optical networks; we believe that
they can stimulate researchers to present analytical solutions
for the questions.

In section II, we formulate mathematically the problems. In
section III and IV, we present, respectively, a simple and a
more complex case. Finally, in sector V, we conclude the

paper.
II. FORMULATION OF THE PROBLEM

A network is formed by a set of nodes and a set of links; the
nodes are connected through the links. Starting from here
we are going to use the nomenclature of the mathematicians
to designate the elements of the problems, the word vertexes
means nodes and its number is denoted by N, the word
edges means full-duplex links and its number is denoted by
L, and the word graph means topology and it is denoted by
G(N,L).

The graph can also be represented by a matrix [g]. The
matrix elements g; are either 0 or 1 in value and specify
whether a pair of vertexes is connected via a physical edge.
The summation of all the values of the matrix elements
yields the number of one-way edges, which is twice the
number of two-way edges, L.

The definition of a graph to our problem goes essentially by
some different moments, one of them is the determination of
the number of vertexes and the number of edges that the
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graph will have, and other moment is to choose the way to
connect the vertexes.

The focus here starting from the second moment, when we
already have the information of the amount of vertexes and
edges that we can apply on the graph.

One graph need to be complete. A graph disconnected
represents an invalid option. This is our first question: how
many valid graphs can we get for a given N and L?

Each one of these graphs may have a different mean number
of spans «s>; the number of spans between a pair of vertexes
is defined as the minimum number of edges that a claim
traverses between the origin and destination vertexes pair.
Algorithms for determining the minimum number of spans
s between vertexes pair (i,j) from the matrix representing
the graph G(N,L), [g], can be used, and so, [s] and s> may
be computed, the matrix [s] represents the exact number of
spans between each pair (i,j) and a mean number of spans
<s» can be calculated by,

N N
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where s;; means the amount of spans — edges - between i and
J, and it will be obtained from matrix [s], where C means the
maximum number of claims, which it can be calculated by,

c=(N-DN_ 2)
2

The maximum number of claims C is directly related to the
maximum number of claims that each vertex can do.

Then, our second question is: given N vertexes and L edges,
how many different values of mean number of spans will be
possible?

If we divide the number of times that an average appeared
by the sum of the number of appearing of all averages, we
obtain the probability of this average.

Thus, we can formulate our third question: what is the
probability of each average value?

III. A SIMPLE CASE
For this simple case, we assumed a simple graph with N=4
vertexes and L=3 edges.

Initially we go to discovery how many combinations there
are with N=4 and L=3. For this, we go use [5],

(ke 3)
k) k) ln-k)!

This indicates that n is the maximum number of edges from
which we want choose, and it is calculated by n=N(N-1)/2

and k is the number of edges to be chosen to generate
combinations.

The minimum value for k is k=N-1, this value represents the
minimum amount of edges that connect all vertexes. And n
represents the maximum amount of edges, when all vertexes
have degree of N-1.

Considering N=4 and L=3, using (3), we have six edges as
maximum and wish to choose three (L=3) for our
combinations, then, we have 6!/31(6-3)!=20 ways, as in Fig.
1.
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Fig. 1. All possibilities of combination for a graph with N=4
vertexes and L=3 edges. We enumerate the different
solutions starting from the upper left and going row by row.

As we can see, there are some graphs that we should discard
because they are not complete graphs, (the solution 17 to 20
on Fig. 1). Then, for our first sub-problem, in this case, we
have 16 as response.

We obtained the values of invalid and valid combinations
through a computational verification which consisted on
verifying if each vertex had at least an edge and if each
vertex had a road with any other vertex.

Now they remain 16 valid graphs, and we chose solution 6
for our next sub-problem, this graph is also represented by

matrix [g], see table 1.
1 :

Fig. 2. A possible graph for a network with N=4 vertexes
and L=3 edges.

Table 1
[g] I 2 3 4
/ 0 1 0 1
2 1 0 0 0
3 0 0 0 1
4 1 0 1 0

Starting the second sub-problem solution, we need to
calculate the mean number of spans for this combination,
which can be obtained after having matrix [s] by (1) and (2).
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In this case, the spans matrix [s] would be like table 2, and
was obtained looking for the shortest path for each vertexes
pair.

Table 2
[s] Ji 2 3 4
/ 0 1 2 1
2 1 0 3 2
3 2 3 0 1
4 1 2 1 0

The mean spans resulting from (1) and (2) for solution 6 is
$»=1.67.

If we repeat this for all the 16 valid graphs, we will have
only 2 different values of mean spans, <$»=1.5 and «$»=1.67.
Therefore, 2 is the answer for our second sub-problem.

Now that we already have the numerical solution for our
two first sub-problem, we want to know what is the
probability of each ¢s».

We denote P, as a probability of «s» and we have verify that
the value <»=1.5 appeared 4 times in a total of 16 and the
value «$»=1.67 appeared 12 times in a total of 16, then the
probability of «»=1.5 is Pys = 4/16 = 0.25 and the
probability of «»=1.67 is P = 12/16 = 0.75. This
represented the solution of the third sub-problem.

The results of the two previous problems can also be seen in
the Fig.3.
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Fig. 4. Probability of each «s> with N=4 and L=3, number of
valid solutions and number of different «s».

The time for a computer with processor Pentium IV 3.2GHz,
I1GB of Random Access Memory (RAM) to solve these
three sub-problems was less than one second.

IV. A MORE COMPLEX CASE

Now, we assumed a graph with N=7 vertex and L=8 edges,
the number of combinations by using (3) is 203490, but
there are 46935 invalid combinations, therefore we get
156555 valid graphs.

The graph presented in Fig. 3 was chosen by chance of the
group of valid solutions for this case.

Fig. 4. A possible graph for a network with N=7 vertex and
L=8 edges.

The matrix of connections [g] and matrix of spans [s] are
represented, respectively, in table 3 and table 4.

Fig. 3. In the xx' axis are represented the 16 valid graph Table 3
obtained in sub-problem 1 and in the yy  axis are g] / 2 S 4 ) 6 7
represented the average number of spans. ! 0 1 ! 0 0 0 0

2 1 0 1 0 0 0 1
In Fig. 4, it is shown the results of the three sub-problems; 3 1 1 0 0 1 0 0
valid solutions, amount of «s> and probability of each «s». 4 0 0 0 0 0 0 1

5 0 0 1 0 0 1 0

6 0 0 0 0 1 0 1

7 0 1 0 1 0 1 0
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Table 4
[s] ! 2 3 4 5 6 7
/ 0 1 1 3 2 3 2
2 1 0 1 2 2 2 1
3 1 1 0 3 1 2 2
4 3 2 3 0 3 2 1
5 2 2 1 3 0 1 2
6 3 2 2 2 1 0 1
7 2 1 2 1 2 1 0

The mean spans for this sample, using (1) and (2) is
«»>=1.81, but if we repeat that for all 156555 graphs, we
have only 13 different values for «s».

In Fig.5, we present a graphic that show the solutions for the
three sub-problems; valid solutions, amount of «s» and
probability of each «s».
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Fig. 5. Amount and probability of <s» and amount of valid
solutions with N=7 and L=8.

The time for a computer with processor Pentium IV 3.2GHz,
1GB of Random Access Memory (RAM) to process these
operations was greater than 43 minutes.

V. DISCUSSION

In this paper, we consider the problem of dimensioning in
multi-layer optical networks and we present three sub-
problems that we expect can be resolved analytically. This
will be a valuable achievement due to the demand of time
and power computation needed to obtain a solution through
numerical methods.

As we can see the problem enlarges quickly. We presented
here two examples, which were treated computationally, the
time demand for obtained the solution for the case with 4
vertexes and 3 edges was smaller than one second and the
time demand for the case with 7 vertexes and 8 edges was
greater than 43 minutes. We can notice that the exponential
growth soon turns difficult the numerical processing.

Examples with small graphs or graphs in which the number
of links are near the limit may be processed numerically and

with a modest time of computing process, but on practice,
we want to treat large graphs as the European Optical
Network that has 20 vertexes and 38 edges [7] or the USA
Optical Network that has 100 vertexes and 171 edges [6].
These cases, with numerical techniques, would be
computationally impracticable.
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