PCAN-LIN

Interface RS-232 to LIN/CAN

Protocol Definitions

Products taken into account

Product name	Model	Item number
PCAN-LIN	Firmware 1.2	n/a

All product names mentioned herein may be the trademarks or registered trademarks of their respective companies. Furthermore, "™" and "®" are not mentioned in each case in this manual.

© 2007 PEAK-System Technik GmbH

PEAK-System Technik GmbH Otto-Roehm-Strasse 69 D-64293 Darmstadt Germany

Phone: +49 (0)6151-8173-20 Fax: +49 (0)6151-8173-29

www.peak-system.com info@peak-system.com

Release date: June 29, 2007

Contents

1 Communication with a PCAN-LIN Module	4
1.1 Serial Protocol 1.1.1 Data Transmission Host - Module 1.1.2 Data Transmission Module - Host	4 4 7
2 Module Interfaces	10
2.1 Notes about Interfaces and Commands2.2 RS-232 Interface	10
2.2 RS-232 Intertace	12
2.2.1 Initialization Commands	12 13
2.2.2 Read Commands	13 17
2.2.3 Configuration Commands 2.2.4 Reset/Erase Commands	17
2.3 CAN Interface	21
2.3.1 Initialization Commands	21
2.3.2 Read Commands	21 22
2.3.3 Configuration Commands	30
2.3.4 Reset/Erase Commands	30 37
2.4 LIN Interface	38
2.4.1 Initialization Commands	38 39
2.4.2 Read Commands	39
2.4.2 Read Commands 2.4.3 Configuration Commands	60
2.4.4 Reset/Erase Commands	82
2.5 Module Interface	89
2.5.1 Initialization Commands	89
2.5.2 Read Commands	89 93
2.5.2 Read Commands 2.5.3 Configuration Commands 2.5.4 Reset/Erase Commands	93
2.5.4 Reset/Erase Commands	94
2.6 Message Forwarding 2.6.1 CAN	95
2.6.2 LIN	100
3 Error Messages	104
3.1 RS-232 Return Codes	104
3.2 CAN Error Codes	105
3 3 ITN Error Codes	106

1 Communication with a PCAN-LIN Module

The main communication with a PCAN-LIN module is done via the RS-232 interface. It is divided in structures containing information about the operation being done, the interface on the module being affected, needed parameters, data transmitted by CAN and LIN messages, or scheduler entries. Because the latter case requires more data, "Write Data" and "Scheduler Entry" commands use a more complex structure.

A total of eight different structures are used: two for the communication between host and module, two for reading and writing CAN messages, two for reading and writing LIN messages, and two for retrieving and setting entries of a LIN master scheduler.

1.1 Serial Protocol

1.1.1 Data Transmission Host - Module

Byte	Description	Bit posi	ition								
		7	6	5	4	3	2	1	0		
1	STX	0	0	0	0	0	0	1	0		
2	Sequence code	X	Sequ	ence n	ο.	Fran	ne len	gth			
3	Control code	Target interfac	e	Command code							
4 n	Parameters	Numbe part of	•						•		
n+1	Checksum	Bitwise of this r start by	messa		•				,		

STX

This is the "Start Transmission" code for any message in a module communication. This code has a fixed value of 2 (0x2, 0b10). A

PCAN-LIN - Protocol Definitions Serial Protocol

message without this start byte will not be recognized as a module message.

Sequence code

The second byte in a message from host to module indicates a sequence number and the length of the data to be sent. The sequence field length is 7 bits. The most significant bit of this field is not used and is recommended to be set to 0 in order to guaranty compatibility with future Firmware versions.

Sequence number: This number between 0 and 7 is an "User Control Number" for sending messages. Its purpose is to help with the differentiation of messages that can be sent as segmented data. A message can not have more than 15 bytes. In case that a message (command) from the host produces an answer message from the module, this response will come with the same sequence number of the message which provoked it.

Frame length: These 4 bits of the sequence code indicate how many parameter/data bytes the message has. A LIN communication message cannot have more than 15 bytes (frame length maximum value is 15 = 4 bits).

For example, a message with a sequence number of 3 and two parameters has the sequence code 50 (0x32, 0b0110010).

Control code

This byte indicates the command to be processed as well as the interface of the module which the command is directed to. The two more significant bytes indicate the interface and the other bytes the command code.

Target interface: These fields with a length of two bytes indicate which of the four interfaces is associated with the command code of the "Command code" field. The codes and description of all possible commands are described in chapter 2 *Module Interfaces* on page 10.

PCAN-LIN - Protocol Definitions Serial Protocol

Command Code: With a length of 6 bits this field can indicate a command between 0 and 63. The commands are divided in four groups. The codes and description of all possible commands are described in chapter 2 *Module Interfaces* on page 10.

For example, a message setting the module's bit rate for the CAN interface has the control code 95 (0x5F, 0b01011111). Code of CAN Interface = 1. Code of bit rate parameter = 31.

Parameters

Succeeding the control code, a LIN communication message will have as many parameter/data bytes as indicated in the frame length field of the sequence code. For example, if the frame length field is 2 (0x2, 0b0010), the module will interpret the following two received bytes after the control code as parameter/data. The form of this parameter/data depends on each command.

For example, a message containing a new bit rate for the CAN interface has two parameter bytes which indicate the desired bit rate. The parameters must be arranged beginning with the least significant byte (LSB). To set a bit rate of 500 kBit/sec (0x001C), a message has a value of 28 (0x1C, 0b11100) as first parameter and a value of 0 (0x0, 0b0) as second parameter. Therefore the parameter bits are 00011100000000000.

Checksum

The last byte of a LIN communication message is the checksum. This byte is the result of an Exclusive-OR operation between the bits of all components of the message with exception of the start byte (STX).

For example, a message with a sequence code of 50, a control code of 95 and two parameters, 28 and 0, has a value of 113 (0x71, 0b01110001) as checksum byte.

In summary, putting this small examples together, a LIN communication message setting the module's CAN interface to the bit rate of 500 kBit/sec using a sequence number of 3 is done by

Serial Protocol

sending the following data to the serial port (order of appearance, from left to right):

Hexadecimal representation: 02 - 32 - 5F - 1C - 00 - 71Decimal representation: 2 - 50 - 95 - 28 - 0 - 113

Binary representation:

1	STX	0	0	0	0	0	0	1	0
2	Sequence code	0	0	1	1	0	0	1	0
3	Control code	0	1	0	1	1	1	1	1
4	Parameter0	0	0	0	1	1	1	0	0
5	Parameter1	0	0	0	0	0	0	0	0
6	Checksum	0	1	1	1	0	0	0	1

1.1.2 Data Transmission Module - Host

Byte	Description	Bit position										
		7	6	5	4	3	2	1	0			
1	STX	0	0	0	0	0	0	1	0			
2	Sequence code	AR	Sequ			Fran	ne lei	ngth				
3 n	Parameters	Number length structu	part of									
n+1	Checksum	Bitwise bytes o byte, st	f this r	nessa	•							

STX

This is the "Start Transmission" code for any message in a module communication. This code has a fixed value of 2 (0x2, 0b10). A message without this start byte will not be recognized as a module message.

Sequence code

The second byte in a message from the module to the host indicates a sequence number and the length of the data to be received. The most significant bit of this field is called Auto Reply bit and its use is reserved for the module. It was introduced to make

PCAN-LIN - Protocol Definitions Serial Protocol

a difference between forwarded messages (AR set to 1) and answers to commands sent by the host.

Sequence Number: This number between 0 and 7 is an "User Control Number" for messages. If the message is a response to a request made by the host, the sequence number is the same sequence number used by the request message. If the message is an Auto Reply message the sequence number is always 0.

Frame Length: These four bits of the sequence code indicate how many bytes are interpreted as parameter/data in the incoming message after the sequence code and before the checksum byte.

For example, a response for the example in section 1.1.1 above (setting the CAN bit rate) is 49 (0x31, 0b0110001). This value corresponds in its sequence number field to 3 (the same used above) and in its frame length field to 1 (one byte as answer). This data byte indicates, if the operation was successful or not. For more information see chapter 3 *Error Messages* on page 104.

Parameters

An incoming LIN communication message from the module will have as many parameter/data bytes after the sequence code byte as indicated in the frame length field. The way to interpret this data depends on the requested information. For more information see the possible return values for the desired command later in this documentation.

For example, if the command to set the CAN bit rate was sent and this operation was successful, the incoming message has only one parameter and this is 0 (no errors).

Checksum

The last byte of an incoming LIN communication message is the checksum. This byte is the result of an exclusive-OR operation between the bits of all components of the message with exception of the start byte (STX).

PCAN-LIN - Protocol Definitions Serial Protocol

For example, a message with a sequence code of 49 and one parameter, 0, has a value of 49 (0x31, 0b00110001) as checksum byte.

In summary, putting this small examples together, an incoming LIN communication message indicating the result of setting the bit rate of the CAN interface (regarding the values used in the request messages as example in the previous section) the serial port receives the following data:

Hexadecimal representation: 02 - 31 - 00 - 31Decimal representation: 2 - 49 - 0 - 49

Binary representation:

1	STX	0	0	0	0	0	0	1	0
2	Sequence code	0	0	1	1	0	0	0	1
3	Parameter0	0	0	0	0	0	0	0	0
4	Checksum	0	0	1	1	0	0	0	1

2 Module Interfaces

2.1 Notes about Interfaces and Commands

The module has 4 interfaces: RS-232, CAN, LIN and Module. A command may not be valid for all interfaces. Each interface has a code in order to direct a command to it. These codes are:

RS-232: 0

— CAN: 1

─ LIN: 2

Module: 3

RS-232 (0)

This interface is used to configure and/or reset/erase information referring to the serial interface of the module. This interface is used to make all needed configurations on the module.

CAN (1)

This interface is used to configure and/or reset/erase the settings of the CAN capabilities of the module.

LIN (2)

This interface is used to configure and/or reset/erase the settings of the LIN capabilities of the module.

Module (3)

This interface is used to read general information about the module as hardware and firmware version as well as to reset it.

The commands are arranged in four groups according to their tasks: initializing, reading, configuring, resetting/deleting. The command "Write Data" is treated separately, since it uses more complex structures.

PCAN-LIN - Protocol Definitions Notes about Interfaces and Commands

The following sections contain tables with the values for the sequence code and the control code of each described command message. The sequence number is 0 by default. If you use another sequence number, you have to recalculate this field.

Abbreviations

- STX: start byte. It is always 0x2.
- SC: sequence code
- CC: control code
- CHK: checksum. The checksum is calculated doing an exclusive-OR operation between the bits of all components of the message with exception of the start byte (STX).

2.2 RS-232 Interface

2.2.1 Initialization Commands

Initialization According to Current Parameters

12

Initialization According to Current Parameters

This command initializes the RS-232 interface with the configured parameters. In this case, the only parameter that can be configured using a configuration command is the baud rate. If a configuration command was successful, the new baud rate will not be used until this command is sent.

		Sequ	ence	Code	(SC)				(Contro	ol Co	de (C	C)		
Х	X Sequence Frame Length						Interface Command Code								
0	0 0 0 0 0 0						0	0	0	0	0	0	0	0	
0		0, 0x0			0, (0x0		0, 0x0 0, 0x0							
			0, 0)x0							0, 0x	0			

Parameters	none
Checksum	SC(0x00) XOR CC(0x00) XOR PX(0x00) = 0x0
Message to send	STX(0x02) - SC(0x00) - CC(0x00) - CHK(0x00)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Note: After changing and initializing the used RS-232 baud rate, the connection with the host must be adjusted to the new value. Therefore a reconnection between host and module using the new baud rate is required because the module will not respond anymore.

RS-232 Interface

2.2.2 Read Commands

Retrieve	Baud Rate		13
Retrieve	RCV Error	Counter	14
Retrieve	XMT Error	Counter	14
Retrieve	All Error	Counters	15

Retrieve Baud Rate

This command retrieves the configured baud rate of the RS-232 interface.

The data to be received starts with the LSB. Example: 0x9600 = P1:0x00 and P2:0x96

		Sequ	ence	Code	(SC)				C	ontro	ol Co	de (C	C)		
X Sequence Frame Length							Interface Command Code								
0	0 0 0 0 0 0						0	0	0	0	1	0	1	1	
0		0, 0x0			0, 0	0x0		0, 0)x0			11,	0xB		
	0, 0x0								1	11, 0x	В				

Parameters	none
Checksum	SC(0x00) XOR CC(0x0B) XOR PX(0x00) = 0x0B
Message to send	STX(0x02) - SC(0x00) - CC(0x0B) - CHK(0x0B)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x96) - CHK(0x94)

A positive response has two parameters with the configured baud rate. In this example the default baud rate is returned with P1 and P2:0x9600 = 38400 Baud

Note: The configured baud rate differs from the used baud rate. The used baud rate is the speed being used to send and receive messages from/to the module in a determined time. A configured baud rate is the result of sending a baud rate configuration message causing the change in the baud rate but not initializing it. To activate the new configured value refer to section 2.2.1 *Initialization Commands*.

PCAN-LIN - Protocol Definitions RS-232 Interface

Retrieve RCV Error Counter

This command retrieves the value of the receive error counter of the RS-232 interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

		Sequ	ence	Code	(SC)				(Contro	ol Co	de (C	C)		
X Sequence Frame Length						Interface Command Code									
0	0 0 0 0 0 0 0						0	0	0	0	1	0	1	1	
0		0, 0x0			0, (0x0		0, 0x0 22, 0x16							
	0, 0x0									2	2, 0x	16			

Parameters	none
Checksum	SC(0x00) XOR CC(0x16) XOR PX(0x00) = 0x16
Message to send	STX(0x02) - SC(0x00) - CC(0x16) - CHK(0x16)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters with the value of the RCV error counter. In this example the default value is returned with P1 and P2:0x0 = 0 errors.

Retrieve XMT Error Counter

This command retrieves the value of the transmit error counter of the RS-232 interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interfa	ice	Con	nmar	nd Co	de					
0	0	0	0	0	0	0	0	0	0	0 0 1 0 1 1						
0		0, 0x0			0, 0	0x0		0, 0x0 23, 0x17								
0, 0x0								2	3, 0x	17						

Parameters	none
Checksum	SC(0x00) XOR CC(0x17) XOR PX(0x00) = 0x17
Message to send	STX(0x02) - SC(0x00) - CC(0x17) - CHK(0x17)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters with the value of the XMT error counter. In this example the default value is returned with P1 and P2:0x0 = 0 errors

Retrieve All Error Counters

This command retrieves the values of the error counters of the RS-232 interface. The returned values are (in this order) the value of the RCV error counter, the value of the XMT error counter and the value of the checksum error counter. Each value is 2 bytes long.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01and P2:0x00

	Sequence Code (SC)							Control Code (CC)							
X Sequence Frame Length						Interface Command Code									
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
0		0, 0x0			0, 0	0x0		0, 0)x0			24, (0x18		
	0, 0x0								2	4, 0x	18				

Parameters	none
Checksum	SC(0x00) XOR CC(0x18) XOR PX(0x00) = 0x18
Message to send	STX(0x02) - SC(0x00) - CC(0x18) - CHK(0x18)
Positive response	STX(0x02) - SC(0x06) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5(0x00) - P6(0x00) - CHK(0x06)

A positive response has 6 parameters with the values of the RCV, XMT and checksum error counters. In this example following is returned:

- with P1 and P2 the default value of the RCV error counter: 0x0 = 0 errors
- with P3 and P4 the default value of the XMT error counter: 0x0 = 0 errors

PCAN-LIN - Protocol Definitions RS-232 Interface

with P5 and P6 the default value of the checksum error counter: 0x0 = 0 errors

2.2.3 Configuration Commands

Configure Baud Rate

17

Configure Baud Rate

The only parameter for the RS-232 interface that can be changed is the baud rate. There are a couple of specific allowed baud rates. When you try to set a baud rate that is not in the allowed list, a negative response message is initiated by the module and the baud rate will not be changed.

Parameters: Two parameters (two bytes) are required in order to specify the desired baud rate. The following table shows the allowed baud rates and its parameter notation P1-P2.

Baud rate	Hex value	P1	P2
4,800	0x12C0	0xC0	0x12
9,600	0x2580	0x80	0x25
19,200	0x4B00	0x00	0x4B
38,400	0x9600	0x00	0x96
57,600	0xE100	0x00	0xE1

The data to be sent and received starts with the LSB. Example: 0x12C0 = P1:0xC0 and P2:0x12

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interface Command Code										
0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1	
0	0 0, 0x0 2, 0x2						0, 0x0 31, 0x1F									
			2, 0)x2						3	1, 0x	1F				

Parameters	Baud rate, two parameters
Checksum	PX = P1(0x00) XOR P2(0x96) = 0x96 SC(0x02) XOR CC(0x1F) XOR PX(0x96) = 0x8B
Message to send	STX(0x02) - SC(0x02) - CC(0x1F) - P1(0x00) - P2(0x96) - CHK(0x0B)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

PCAN-LIN - Protocol Definitions RS-232 Interface

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Note: The configured baud rate differs from the used baud rate. The used baud rate is the speed being used to send and receive messages from/to the module in a determined time. A configured baud rate is the result of sending a baud rate configuration message causing the change in the baud rate but not initializing it. To activate the new configured value refer to section 2.2.1 *Initialization Commands* on page 12.

RS-232 Interface

2.2.4 Reset/Erase Commands

Reset RCV Error Counter	19
Reset XMT Error Counter	19
Reset Checksum Error Counter	20

Reset RCV Error Counter

This command directs the module to reset the counter of the reception errors of the RS-232 interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interface Command Code										
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	
0	0 0, 0x0 0, 0x0						0, 0)x0			52, (0x34				
	0, 0x0									5	2, 0x	34				

Parameters	none
Checksum	SC(0x00) XOR CC(0x34) XOR PX(0x00) = 0x34
Message to send	STX(0x02) - SC(0x00) - CC(0x34) - CHK(0x34)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset XMT Error Counter

This command directs the module to reset the counter of the transmission errors of the RS-232 interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

RS-232 Interface

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length							Interface Command Code									
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	
0	0 0,0x0 0,0x0						0, 0x0 53, 0x35									
	0, 0x0									5	3, 0x	35				

Parameters	none
Checksum	SC(0x00) XOR CC(0x35) XOR PX(0x00) = 0x35
Message to send	STX(0x02) - SC(0x00) - CC(0x35) - CHK(0x35)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Reset Checksum Error Counter

This command directs the module to reset the counter of the checksum errors of the RS-232 interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
Х	X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0	0	0	0	0	0	1	0	1	1		
0	0 0,0x0 0,0x0					0, 0)x0			55, (0x37					
			0, 0	x0						5	5, 0x	37				

Parameters	none
Checksum	SC(0x00) XOR CC(0x37) XOR PX(0x00) = 0x37
Message to send	STX(0x02) - SC(0x00) - CC(0x37) - CHK(0x37)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 Error Messages on page 104.

2.3 CAN Interface

2.3.1 Initialization Commands

Initialization according to current parameters

21

Initialization according to current parameters

This command initializes the CAN interface with the configured parameters.

	Sequence Code (SC)							Control Code (CC)									
X Sequence Frame Length					Interface Command Code												
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0		
0	0 0,0x0 0,0x0						1, 0x1 0, 0x0										
			0, 0)x0						6	4, 0x	40					

Parameters	none
Checksum	SC(0x00) XOR CC(0x40) XOR PX(0x00) = 0x40
Message to send	STX(0x02) - SC(0x00) - CC(0x40) - CHK(0x40)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

CAN Interface

2.3.2 Read Commands

Retrieve	Activation Status	22
Retrieve	Bit Rate	22
Retrieve	Forward Mask	23
Retrieve	Filter Mask	25
Retrieve	Filter Code	25
Retrieve	CAN ID Offset for LIN Messages	26
	RCV Error Counter	27
Retrieve	XMT Error Counter	27
	All Error Counters	28

Retrieve Activation Status

This command retrieves a value indicating, if the CAN features of the module are active. If not, a configuration of the interface is still possible but it doesn't have any effect when a CAN feature is required in order to handle an event.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01and P2:0x00

	Sequence Code (SC)								Control Code (CC)								
Х	X Sequence Frame Length						Interface Command Code										
0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0		
0	0 0,0x0 0,0x0						1, 0x1 10, 0xA										
			0, 0)x0						7	4, 0x	4A					

Parameters	none
Checksum	SC(0x00) XOR CC(0x4A) XOR PX(0x00) = 0x4A
Message to send	STX(0x02) - SC(0x00) - CC(0x4A) - CHK(0x4A)
Positive response	STX(0x02) - SC(0x02) - P1(0x01) - P2(0x00) - CHK(0x03)

A positive response has two parameters. If the value formed by P1 and P2 (in this case 0x01) is greater than 0, this means "Interface is active", otherwise "Interface is not active".

Retrieve Bit Rate

This command retrieves the configured bit rate of the CAN interface. The bit rate is in Btr0Btr1 format.

The data to be received starts with the LSB. Example: 0x011C =P1:0x1C and P2:0x01

	Sequence Code (SC)								Control Code (CC)									
X Sequence Frame Length							Interface Command Code											
0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	1			
0	0 0,0x0 0,0x0						1, 0x1 11, 0xB											
			0, 0)x0						7	5, 0x	4B						

Parameters	none
Checksum	SC(0x00) XOR CC(0x4B) XOR PX(0x00) = 0x4B
Message to send	STX(0x02) - SC(0x00) - CC(0x4B) - CHK(0x4B)
Positive response	STX(0x02) - SC(0x02) - P1(0x1C) - P2(0x00) - CHK(0x1E)

A positive response has two parameters with the configured bit rate. In this example the default bit rate is returned with P1 and P2: $0 \times 0010 = 500 \text{ kBit/s}$

Note: The configured bit rate differs from the used bit rate. The used bit rate is the speed being used to send and receive messages from/to the module in a determined time. A configured bit rate is the result of sending a bit rate configuration message causing the change in the bit rate but not initializing it. To activate the new configured value refer to section 2.3.1 Initialization Commands on page 21.

Retrieve Forward Mask

This command retrieves the configured forward mask of the CAN interface in a module. This mask tells an interface to which other interface(s) the received messages shall be forwarded and if error information shall be monitored. The errors can be redirected to the RS-232 interface, too.

The forward mask value is a bit combination (bitwise OR operation) of the values in the following table:

PCAN-LIN - Protocol Definitions CAN Interface

Mask value	Meaning
0x80	Forward error information to RS-232 interface
0x40	Forward error information to CAN interface
0x04	Forward CAN messages to RS-232 interface
0x02	Forward CAN messages to LIN interface

For example, a forward mask of 0x86, means that the error information of the CAN interface are sent to the RS-232 interface and received CAN messages are forwarded to both the LIN and the RS-232 interface.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

	Sequence Code (SC)								Control Code (CC)								
Х	X Sequence Frame Length						Interface Command Code										
0	0	0	0 0 0 0 0					0	1	0	0	1	1	0	0		
0		0, 0x0			0, (0x0		1, 0x1 12, 0xC									
	0, 0x0									7	6, 0x	4C					

Parameters	none
Checksum	SC(0x00) XOR CC(0x4C) XOR PX(0x00) = 0x4C
Message to send	STX(0x02) - SC(0x00) - CC(0x4C) - CHK(0x4C)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. In this example the returned value is the default value (no forwarding). If the value is different than 0, you can figure out which kind of forwarding is configured by doing a bitwise AND operation using the values from the mask table. For example, if the returned value is 0x86, the AND operation would be as follows:

- If (0x86 AND 0x80 = 0x80), then forward error information to RS-232 interface
- If (0x86 AND 0x04 = 0x04), then forward CAN messages to RS-232 interface

Retrieve Filter Mask

This command retrieves the configured acceptance mask of the CAN interface in a module. The CAN acceptance mask, in conjunction with the acceptance code, is a filter used to tell the CAN interface which messages are received. This filter is referring to the ID of a CAN message.

The data to be received starts with the LSB. Example: 0x221100FF = P1:0xFF, P2:0x00, P3:0x11, and P4:0x22

	Sequence Code (SC)								Control Code (CC)							
X	X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0 0 0 0				1	0	0	1	1	0	1	
0		0, 0x0	0x0 0, 0x0					1, 0x1 13, 0xD								
	0, 0x0									7	7, 0x	4D				

Parameters	none
Checksum	SC(0x00) XOR CC(0x4D) XOR PX(0x00) = 0x4D
Message to send	STX(0x02) - SC(0x00) - CC(0x4D) - CHK(0x4D)
Positive response	STX(0x02) - SC(0x04) - P1(0xFF) - P2(0xFF) - P3(0xFF) - P4(0xFF) - CHK(0x04)

A positive response has 4 parameters. In this example the returned value is the default value for a Filter Mask (0xFFFFFFF). For more information about CAN filters, see the Application Note AN97076 for the CAN controller Philips SJA1000.

Retrieve Filter Code

This command retrieves the configured acceptance code of the CAN interface in a module. The CAN acceptance code, in conjunction with the acceptance mask, is a filter used to tell the CAN interface which messages are received. This filter is referring to the ID of the CAN messages.

The data to be received starts with the LSB. Example: 0x221100FF = P1:0xFF, P2:0x00, P3:0x11, and P4:0x22

CAN Interface

	Sequence Code (SC)								Control Code (CC)								
Х	X Sequence Frame Length							Interface Command Code									
0	0	0	0	0	0 0 0 0			0	1	0	0	1	1	0	1		
0		0, 0x0	0, 0x0 0, 0x0					1, 0x1 14, 0xE									
	0, 0x0									7	8, 0x	4E					

Parameters	none
Checksum	SC(0x00) XOR CC(0x4E) XOR PX(0x00) = 0x4E
Message to send	STX(0x02) - SC(0x00) - CC(0x4E) - CHK(0x4E)
Positive response	STX(0x02) - SC(0x04) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - CHK(0x04)

A positive response has 4 parameters. In this example the returned value is the default value for a filter code (0x0000000). For more information about CAN filters, see the application note AN97076 for the CAN controller Philips SJA1000.

Retrieve CAN ID Offset for LIN Messages

This command retrieves the configured CAN ID offset for LIN messages. The length of a LIN messages ID is one byte. CAN messages need an ID offset in order to be successfully forwarded to the LIN interface.

The data to be received starts with the LSB. Example: 0x00110022 = P1:0x22, P2:0x00, P3:0x11, and P4:0x00

	Sequence Code (SC)								Control Code (CC)								
X	X Sequence Frame Length							Interface Command Code									
0	0	0	0	0	0 0 0 0				1	0	0	1	1	1	1		
0	0, 0x0 0, 0x0					1, 0x1 15, 0xF											
	0, 0x0									7	9, 0x	4F					

Parameters	none
Checksum	SC(0x00) XOR CC(0x4F) XOR PX(0x00) = 0x4F
Message to send	STX(0x02) - SC(0x00) - CC(0x4F) - CHK(0x4F)
Positive response	STX(0x02) - SC(0x04) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - CHK(0x04)

Description of the positive response:

Param(s)	Description
P1	Least significant byte of the CAN ID offset
P2	2 nd byte of the CAN ID offset (only 3 bits for 11-bit CAN ID)
P3	3 rd byte of the CAN ID offset (only 29-bit CAN ID)
P4	Bits 0 to 4: Most significant part of the CAN ID offset (only 29-bit CAN ID) Bit 5: Not used Bit 6: Not used Bit 7: Flag for extended CAN ID (0 = 11 bits, 1 = 29 bits)

Retrieve RCV Error Counter

This command retrieves the value of the receive error counter of the CAN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X	X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0 0 0 0				1	0	1	0	1	1	0	
0		0, 0x0 0, 0x0					1, 0x1 22, 0x16									
			0, 0)x0						8	6, 0x	56				

Parameters	none
Checksum	SC(0x00) XOR CC(0x56) XOR PX(0x00) = 0x56
Message to send	STX(0x02) - SC(0x00) - CC(0x56) - CHK(0x56)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters with the value of the RCV error counter. In this example the default value is returned with P1 and P2: 0x0 = 0 errors

Retrieve XMT Error Counter

This command retrieves the value of the transmit error counter of the CAN interface.

PCAN-LIN - Protocol Definitions CAN Interface

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)								Control Code (CC)								
X	X Sequence Frame Length						Interface Command Code										
0	0	0	0	0	0 0 0 0				1	0	1	0	1	1	1		
0		0, 0x0		0, 0x0					1, 0x1 23, 0x17								
	0, 0x0									8	7, 0x	57					

Parameters	none
Checksum	SC(0x00) XOR CC(0x57) XOR PX(0x00) = 0x57
Message to send	STX(0x02) - SC(0x00) - CC(0x57) - CHK(0x57)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters with the value of the XMT error counter. In this example the default value is returned with P1 and P2: 0x0 = 0 errors

Retrieve All Frror Counters

This command retrieves the values of the errors counters of the CAN interfaces. The returned values are (in this order) the value of the RCV error counter, the value of the XMT error counter, the bus passive state error counter and the bus off state error counter. Each value is 2 bytes long.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)									
X Sequence Frame Length							Interface Command Code										
0	0	0	0	0	0	0	0	0	1	0 1 1 0 0 0							
0		0, 0x0			0, (0x0		1, 0)x1			24, (0x18				
	0, 0x0									8	8, 0x	58					

PCAN-LIN - Protocol Definitions CAN Interface

Parameters	none
Checksum	SC(0x00) XOR CC(0x58) XOR PX(0x00) = 0x58
Message to send	STX(0x02) - SC(0x00) - CC(0x58) - CHK(0x58)
Positive response	STX(0x02) - SC(0x08) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5(0x00) - P6(0x00) - P7(0x00) - P8(0x00) - CHK(0x08)

A positive response has 8 parameters with the value of the RCV, XMT, bus passive and bus off states error counters. In this example the following is returned:

- with P1 and P2 the default value of the RCV error counter: 0x0 = 0 errors
- with P3 and P4 the default value of the XMT error counter: 0x0 = 0 errors
- with P5 and P6 the default value of the bus passive state error counter: 0x0 = 0 errors
- with P7 and P8 the default value of the bus off state error counter: 0x0 = 0 errors

CAN Interface

2.3.3 **Configuration Commands**

set	Activation Status	30
Set	Bit Rate	31
Set	Forward Mask	32
Set	Filter Mask	33
Set	Filter Code	34
Set	CAN ID Offset for LIN Messages	35

Set Activation Status

This command sets a value in the module which indicates, if the CAN features are activated.

The data to be sent or received starts with the LSB. Example: 0x1 =P1:0x01 and P2:0x00

	Sequence Code (SC)								Control Code (CC)								
X	X Sequence Frame Length						Interface Command Code										
0	0	0	0	0	0	0	1	0	1	0 1 1 1 1 (
0		0, 0x0			1, (0x1		1, 0x1 30, 0x1E									
	1, 0x1								9	4, 0x	5E						

Parameters	One parameter (one byte) is required in order to specify the activation status of the CAN interface. This parameter byte works as a boolean value. If the parameter is 0, the interface will be deactivated, otherwise will be set to active. (In the example the interface will be activated.)
Checksum	P1 = 0x01 SC(0x01) XOR CC(0x5E) XOR PX(0x01) = 0x5E
Message to send	STX(0x02) - SC(0x01) - CC(0x5E) - P1(0x01) - CHK(0x5E)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Note: The activation of the interface does not require an initialization using the initialization command.

PCAN-LIN - Protocol Definitions CAN Interface

Set Bit Rate

This command directs the module to change the bit rate used by the CAN interface (Btr0Btr1 format). There are a couple of preset bit rates, but all valid CAN bit rate can be used.

Parameters: Two parameters (2 bytes) are required in order to specify the desired bit rate. The following table shows the frequently used bit rates and their parameter notation P1-P2.

Bit rate	Hex value	P1	P2
1 MBit/s	0x0014	0x14	0x00
500 kBit/s	0x001C	0x1C	0×00
250 kBit/s	0x011C	0x1C	0x01
125 kBit/s	0x031C	0x1C	0x03
100 kBit/s	0x432F	0x2F	0x43
50 kBit/s	0x472F	0x2F	0x47
20 kBit/s	0x532F	0x2F	0x53
10 kBit/s	0x672F	0x2F	0×67
5 kBit/s	0x7F7F	0x7F	0x7F

The data to be sent and received starts with the LSB. Example: 0x12C0 = P1:0xC0 and P2:0x12

	Sequence Code (SC)							Control Code (CC)									
Х	X Sequence Frame Length							Interface Command Code									
0	0	0	0	0	0	1	0	0	1	0 1 1 1 1 1							
0		0, 0x0			2, ()x2		1, 0)x1			31, (0x1F				
	2, 0x2									9	5, 0x	5F					

Parameters	In this example the default bit rate of the CAN interface is set: 500 kBit/s (Btr0Btr1: 0x001C). The number of needed parameters is 2.
Checksum	PX = P1(0x1C) XOR P2(0x00) = 0x1C SC(0x02) XOR CC(0x5F) XOR PX(0x1C) = 0x41
Message to send	STX(0x02) - SC(0x02) - CC(0x5F) - P1(0x1C) - P2(0x00) - CHK(0x41)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

CAN Interface

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 Error Messages on page 104.

Note: The configured bit rate differs from the used bit rate. The used bit rate is the speed being used by the CAN interface to interact with the CAN bus in a determined time. A configured bit rate is the result of sending a bit rate configuration message causing the change in the bit rate but not initializing it. To activate the new configured value refer to section 2.3.1 Initialization Commands on page 21.

Set Forward Mask

This command sets the forward mask of the CAN interface in a module. This mask tells an interface to which other interface(s) the received messages are forwarded and, if error information is monitored. The errors can be redirected to the RS-232 interface.

The forward mask value is a bit combination (bitwise-OR operation) of the values in the following table:

Mask value	Meaning
0x80	Forward error information to RS-232 interface
0x40	Forward error information to CAN interface
0x04	Forward CAN messages to RS-232 interface
0x02	Forward CAN messages to LIN interface

For example, a forward mask of 0x86 means that the error information of the CAN interface will be sent to the RS-232 interface and received CAN messages will be forwarded to both the LIN and the RS-232 interface.

Note: In order to forward error information to the RS-232 interface (mask value 0x80) the corresponding message forwarding (0x04) must be activated, too.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

	Sequence Code (SC)								Control Code (CC)								
X Sequence Frame Length							Interface Command Code										
0	0	0	0	0	0	0	1	0	1	1 0 0 0 0 0							
0	0 0, 0x0 1, 0x1							1, 0x1 32, 0x20									
	1, 0x1							96, 0x60									

Parameters	One parameter (one byte) is required. In this example the mask will be used to monitor errors and, if any, to forward them to the RS-232 interface. The value to send is 0x80 (forward error information to RS-232 interface).
Checksum	P1 = 0x80 SC(0x01) XOR CC(0x60) XOR P1(0x80) = 0xE1
Message to send	STX(0x02) - SC(0x01) - CC(0x60) - P1(0x80) - CHK(0xE1)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Filter Mask

This command sets an acceptance mask for the CAN interface in a module. The CAN acceptance mask, in conjunction with the acceptance code, is a filter used to tell the CAN interface which messages are received. This filter is referring to the ID of a CAN message.

The data to be received starts with the LSB. Example: 0x221100FF = P1:0xFF, P2:0x00, P3:0x11, and P4:0x22

	Sequence Code (SC)								Control Code (CC)							
X	X Sequence Frame Length						Interface Command Code									
0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	1	
0	0 0,0x0 4,0x4							1, 0)x1			33, (0x21			
	4, 0x4									9	7, 0x	61				

PCAN-LIN - Protocol Definitions CAN Interface

Parameters	Four parameters (4 bytes) are required. An acceptance mask is four bytes long because it uses the 29-bit identifier. For more information about CAN filters, see the application note AN97076 for the CAN controller Philips SJA1000. In this example a filter mask of 0x1FFFFFFF will be used.
Checksum	PX = P1(0xFF) XOR P2(0xFF) XOR P3(0xFF) XOR P4(0x1F) = 0xE0 SC(0x04) XOR CC(0x61) XOR PX(0xE0) = 0x85
Message to send	STX(0x02) - SC(0x04) - CC(0x61) - P1(0xFF) - P2(0xFF) - P3(0xFF) - P4(0x1F) - CHK(0x85)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has one parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Filter Code

This command sets the acceptance code for the CAN interface in a module. The CAN acceptance code, in conjunction with the acceptance mask, is a filter used to tell the CAN interface which messages are received. This filter is referring to the ID of the CAN messages.

The data to be received starts with the LSB. Example: 0x221100FF = P1:0xFF, P2:0x00, P3:0x11, and P4:0x22

Sequence Code (SC)									C	ontro	ol Co	de (C	C)		
Х	Sequence			Fi	rame	e Length Interface Command Code					de				
0	0	0	0	0	1	0	0	0	1	1 0 0 0 1		1	0		
0	0, 0x0 4, 0x4						1, 0)x1	34, 0x22						
	4, 0x4								9	8, 0x	62				

Parameters	Four parameters (4 bytes) are required. An acceptance code is four bytes long because it uses the 29-bit identifier. For more information about CAN filters, see the application note AN97076 for the CAN controller Philips SJA1000. In this example a filter code of 0xABBCCDEF will be used.
Checksum	PX = P1(0xEF) XOR P2(0xCD) XOR P3(0xBC) XOR P4(0xAB) = 0x35 SC(0x04) XOR CC(0x62) XOR PX(0x35) = 0x53
Message to send	STX(0x02) - SC(0x04) - CC(0x62) - P1(0xEF) - P2(0xCD) - P3(0xBC) - P4(0xAB) - CHK(0x53)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has one parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set CAN ID Offset for LIN Messages

This command sets the CAN ID offset for LIN messages in a module. The length of a LIN message's ID is one byte. CAN messages need an ID offset in order to be successfully forwarded to the LIN interface.

The data to be received starts with the LSB. Example: 0x80110022 = P1:0x22, P2:0x00, P3:0x11, and P4:0x80

Sequence Code (SC)									C	ontro	ol Co	de (C	C)		
Х	X Sequence			Fi	rame	Leng	th	Interface Command Code							
0	0	0	0	0	1	0	0	0	1 1 0 0 0 1		1	1			
0	0, 0x0 4, 0x4					1, 0)x1	35, 0x23							
4, 0x4									9	9, 0x	63	, and the second		·	

Parameters	Four parameters (4 bytes) are required. A CAN ID offset is four bytes long (see extra table below). In this example an ID mask of 0x00110022 will be used.
Checksum	PX = P1(0x22) XOR P2(0x00) XOR P3(0x11) XOR P4(0x80) = 0xB3 SC(0x04) XOR CC(0x63) XOR PX(0xB3) = 0xD4
Message to send	STX(0x02) - SC(0x04) - CC(0x63) - P1(0x22) - P2(0x00) - P3(0x11) - P4(0x80) - CHK(0xD4)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

PCAN-LIN - Protocol Definitions CAN Interface

A positive response has one parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Param(s)	Description
P1	Least significant byte of the CAN ID offset
P2	2^{nd} byte of the CAN ID offset (only 3 bits for 11-bit CAN ID, other bits = 0)
P3	3 rd byte of the CAN ID offset (only 29-bit CAN ID, else set to 0)
P4	Bits 0 to 4: Most significant part of the CAN ID offset (only 29-bit CAN ID, else set to 0) Bit 5: Not used (set to 0) Bit 6: Not used (set to 0) Bit 7: Flag for extended CAN ID (0 = 11 bits, 1 = 29 bits)

2.3.4 Reset/Erase Commands

The CAN interface doesn't have reset or erase commands.

2.4 LIN Interface

2.4.1 Initialization Commands

Initialization According to Current Parameters

38

Initialization According to Current Parameters

This command initializes the LIN interface with the configured parameters.

	Sequence Code (SC)							Control Code (CC)								
X	Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
0	0, 0x0 0, 0x0						2, 0x2 0, 0x0									
	0, 0x0									12	28, 0x	κ80				

Parameters	none
Checksum	SC(0x00) XOR CC(0x80) XOR PX(0x00) = 0x80
Message to send	STX(0x02) - SC(0x00) - CC(0x80) - CHK(0x80)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has one parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

LIN Interface

2.4.2 Read Commands

Retrieve	Activation Status	39
Retrieve	Bit Rate	40
Retrieve	Forward Mask	41
Retrieve	Filter Mask	42
Retrieve	Filter Code	43
Retrieve	Slave Mask Status	43
Retrieve	Master Status	46
Retrieve	LIN Bus Termination (Master Termination)	46
Retrieve	Message Transmission Timeouts	47
	Message Retries	48
	Scheduler Entries Count	48
Retrieve	Scheduler Entry	49
	RCV Error Counter	50
	XMT Error Counter	51
	All Error Counters	51
Retrieve	Slave ID + Data Configuration Information	52
Retrieve	Bit Rate Recognition for Synchronization	
Field Sta		53
	Frame Length	54
	Checksum Type	56
Retrieve	CAN ID for Slave Activation	58

Retrieve Activation Status

This command retrieves a value indicating, if the LIN features of the module are active. If not, a configuration of the interface is still possible but doesn't have an effect when a LIN feature is required in order to handle an event.

	Sequence Code (SC)							Control Code (CC)								
Х	X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	
0	0, 0x0 0, 0x0					2, 0x2 10, 0xA										
	0, 0x0									13	38, 0x	A8				

Parameters	none
Checksum	SC(0x00) XOR CC(0x8A) XOR PX(0x00) = 0x8A
Message to send	STX(0x02) - SC(0x00) - CC(0x8A) - CHK(0x8A)
Positive response	STX(0x02) - SC(0x02) - P1(0x01) - P2(0x00) - CHK(0x03)

A positive response has two parameters. If the value formed by P1 and P2 (in this case 0x01) is greater than 0, this means "interface is active", otherwise "interface is not active".

Retrieve Bit Rate

This command retrieves the configured bit rate of the LIN interface.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

	Sequence Code (SC)							Control Code (CC)								
X	Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1	
0	0, 0x0 0, 0x0						2, 0x2 11, 0xB									
	0, 0x0									13	39, 0×	8B				

Parameters	none
Checksum	SC(0x00) XOR CC(0x8B) XOR PX(0x00) = 0x8B
Message to send	STX(0x02) - SC(0x00) - CC(0x8B) - CHK(0x8B)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x4B) - CHK(0x49)

A positive response has two parameters with the configured bit rate. In this example the default bit rate is returned with P1 and P2: 0x4B00 = 19200 kBit/s

Note: The configured bit rate differs from the used bit rate. The used bit rate is the speed being used by the LIN interface to interact with the LIN bus in a determined time. A configured bit rate is the result of sending a bit rate configuration message causing the change in the bit rate but not initializing it. To activate the new configured value refer to section 2.4.1 *Initialization Commands*.

Retrieve Forward Mask

This command sets the forward mask of the LIN interface in a module. This mask tells an interface to which other interface(s) the received messages are forwarded and, if error information is monitored. The errors can be redirected to the RS-232 and the CAN interface.

The forward mask value is a bit combination (bitwise-OR operation) of the values in the following table:

Mask value	Meaning
0x80	Forward error information to RS-232 interface
0x40	Forward error information to CAN interface
0x04	Forward LIN messages to RS-232 interface
0x01	Forward LIN messages to CAN interface

For example, a forward mask of 0xC5 means that the error information as well as the messages of the LIN Interface will be forwarded to both the CAN and the RS-232 interface.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

	Sequence Code (SC)								Control Code (CC)								
Х	X Sequence Frame Length						Interface Command Code										
0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0		
0	0, 0x0 0, 0x0					2, 0x2 12, 0xC											
			0, 0)x0						14	40, 0×	:8C					

Parameters	none
Checksum	SC(0x00) XOR CC(0x8C) XOR PX(0x00) = 0x8C
Message to send	STX(0x02) - SC(0x00) - CC(0x8C) - CHK(0x8C)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. In this example the returned value is the default value (no forwarding). If the value is different than 0, you can figure out which kind of forwarding is configured by doing a bitwise AND operation using the values from

the mask table. For example, if the returned value is 0xC5, the AND operation would be as follows:

- If (0xC5 AND 0x80 = 0x80), then forward error information to RS-232 interface
- If (0xC5 AND 0x40 = 0x40), then forward error information to CAN interface
- If (0xC5 AND 0x04 = 0x04), then forward LIN messages to RS-232 interface
- If (0xC5 AND 0x02 = 0x02), then forward LIN messages to CAN interface

Retrieve Filter Mask

This command retrieves the configured acceptance mask of the LIN interface in a module. The LIN acceptance mask, in conjunction with the acceptance code, is a filter used to tell the LIN interface which messages are received. This filter is referring to the ID of a LIN message.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

	Sequence Code (SC)								Control Code (CC)								
X	K Sequence				Frame Length			Interfa	Command Code								
0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1		
0	0, 0x0 0, 0x0						2, 0x2 13, 0xD										
	0, 0x0									14	11, 0x	8D		, and the second	·		

Parameters	none
Checksum	SC(0x00) XOR CC(0x8D) XOR PX(0x00) = 0x8D
Message to send	STX(0x02) - SC(0x00) - CC(0x8D) - CHK(0x8D)
Positive response	STX(0x02) - SC(0x02) - P1(0xFF) - P2(0x00) - CHK(0xFD)

A positive response has two parameters. In this example the returned value is the default value for a filter mask (0xFF).

Retrieve Filter Code

This command retrieves the configured acceptance code of the LIN interface in a module. The LIN acceptance code, in conjunction with the acceptance mask, is a filter used to tell the LIN interface which messages are received. This filter is referring to the ID of a LIN message.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

	Sequence Code (SC)								Control Code (CC)						
Х	Sequence Frame Length					Interface Command Code									
0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1
0		0, 0x0 0, 0x0					2, 0x2 14, 0xE								
	0, 0x0									14	12, 0×	8E			

Parameters	none
Checksum	SC(0x00) XOR CC(0x8E) XOR PX(0x00) = 0x8E
Message to send	STX(0x02) - SC(0x00) - CC(0x8E) - CHK(0x8E)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. In this example the returned value is the default value for a filter code (0x00).

Retrieve Slave Mask Status

This command retrieves the current slave mask status (active or inactive) for one or all LIN message IDs. This command needs two parameters (two bytes). The first parameter (P1) has two possible values, 0x00 or 0x01. Using 0 means that the slave mask status of all IDs is returned. In this case the second parameter doesn't matter, but still must be sent. Specifying 1 means that the second parameter (P2) indicates a valid LIN ID. For this LIN ID the slave mask status is returned.

P1	P2	Description
0	Ignored	Retrieves the slave mask status of all 64 IDs (0x00 to 0x3F)
1	LIN ID (0x00 0x3F)	Retrieves the slave mask status of the LIN ID passed with parameter P2

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

Case A: request of slave ask status for all LIN IDs (P1 = 0)

	Sequence Code (SC)							Control Code (CC)							
X	Sequence Frame Length					Interface Command Code									
0	0	0	0	0	0	1	0	1	0	0	0	1	1	1	1
0		0, 0x0 2, 0x2					2, 0x2 15, 0xF								
	2, 0x2									14	43, 0x	ßF			

Parameters	Two parameters (two bytes) are required. The first parameter indicates that the operation should be done for all IDs (0x00), the second parameter is not used but must be sent, too.
Checksum	PX = P1(0x00) XOR P2(0x00) = 0x00 SC(0x02) XOR CC(0x8F) XOR PX(0x00) = 0x8D
Message to send	STX(0x02) - SC(0x02) - CC(0x8F) - P1(0x00) - P2(0x00) - CHK(0x8D)
Positive response	STX(0x02) - SC(0x08) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5 (0x00) - P6(0x00) - P7(0x00) - P8(0x00) - CHK(0x02)

A positive response has 8 parameters. In this example the returned value is the default value for a slave mask where all slave mask IDs are inactive.

Case B: request of slave mask status for a single ID (P1 = 1)

	Sequence Code (SC)								Control Code (CC)							
X	Sequence Frame Length						Interface Command Code									
0	0 0 0 0 0 1 0		0	1	0	0	0	1	1	1	1					
0	0, 0x0 2, 0x2					2, 0x2 15, 0xF										
	2, 0x2								14	43, 0>	ι8F	·	·			

Parameters	Two parameters (two bytes) are required. The first parameter indicates that the operation should be done for a single ID (0x01), the second parameter indicates the corresponding ID. In this example this is ID 57 (0x39).
Checksum	PX = P1(0x01) XOR P2(0x39) = 0x38 SC(0x02) XOR CC(0x8F) XOR PX(0x38) = 0xB5
Message to send	STX(0x02) - SC(0x02) - CC(0x8F) - P1(0x01) - P2(0x39) - CHK(0xB5)
Positive response	STX(0x02) - SC(0x02) - P1(0x39) - P2(0x00) - CHK(0x3B)

A positive response has two parameters. In this example the returned value is the default value for a slave mask of ID 57 (0x39) which is inactive. P1 contains the requested ID and P2 the associated value.

The mask status is treated as boolean value. If the returned value is 1, the mask is active for that ID, if it is 0, then it is not active. The slave mask status for all IDs is returned in 8 data bytes, each status is delivered through a single bit.

Data Bytes	ID/Bit /	Assignm	ent					
	7	6	5	4	3	2	1	0
P1 (IDs 0 7)	0x07	0x06	0x05	0x04	0x03	0x02	0x01	0x00
P2 (IDs 8 15)	0x0F	0x0E	0x0D	0x0C	0x0B	0x0A	0x09	0x08
P3 (IDs 16 23)	0x17	0x16	0x15	0x14	0x13	0x12	0x11	0x10
P4 (IDs 24 31)	0x1F	0x1E	0x1D	0x1C	0x1B	0x1A	0x19	0x18
P5 (IDs 32 39)	0x27	0x26	0x25	0x24	0x23	0x22	0x21	0x20
P6 (IDs 40 47)	0x2F	0x2E	0x2D	0x2C	0x2B	0x2A	0x29	0x28
P7 (IDs 48 55)	0x37	0x36	0x35	0x34	0x33	0x32	0x31	0x30
P8 (IDs 56 63)	0x3F	0x3E	0x3D	0x3C	0x3B	0x3A	0x39	0x38

For example, if you receive P3 with a value of 0x82 (0b10000010), this means that the IDs 16, 18, 19, 20, 21, and 22 have the slave mask status "inactive" and the IDs 17 (0x11) and 23 (0x17) have the slave mask status "active".

Retrieve Master Status

This command retrieves a value indicating the master status of the LIN interface of a module (active/inactive). The status "active" means that the master scheduler has entries and they are transmitted.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)							
Х	Sequence Frame Length				Interface Command Code										
0	0	0	0	0 0 0 0 0		0	1	0	0	1	0	0	0	0	
0		0, 0x0	0, 0x0 0, 0x0				2, 0x2 16, 0x10								
	0, 0x0									14	44, 0×	(90			

Parameters	none
Checksum	SC(0x00) XOR CC(0x90) XOR PX(0x00) = 0x90
Message to send	STX(0x02) - SC(0x00) - CC(0x90) - CHK(0x90)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. If the value formed by P1 and P2 (in this case 0x00) is equals 0, the LIN master is inactive, otherwise the LIN master is active.

Retrieve LIN Bus Termination (Master Termination)

This command retrieves a value which indicates, if the module is configured as master or slave (the so called termination). The default termination for a module is "Slave".

	Sequence Code (SC)							Control Code (CC)							
Х	Sequence Fr				rame Length			Interfa	ace	Command Code					
0	0 0 0		0	0	0	0	1 0		0	1	0	0	0	1	
0	0, 0x0		0, 0x0			2, 0x2 17, 0x11									
	0, 0x0									14	45, 0x	. 91			

Parameters	none
Checksum	SC(0x00) XOR CC(0x91) XOR PX(0x00) = 0x91
Message to send	STX(0x02) - SC(0x00) - CC(0x91) - CHK(0x91)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. If the value formed by P1 and P2 (in this case 0x00) equals 0, this means "slave termination", otherwise "master termination".

Retrieve Message Transmission Timeouts

This command retrieves a couple of values which indicate the timeouts (in milliseconds) for the transmission of messages. The timeouts are for bus idle messages, messages with the frame length 8, frame length 4, and frame length 2. The response to this command expresses the timeouts in that order. The length of each timeout is 2 bytes.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)								Control Code (CC)							
X	X Sequence Frame Length						Interface Command Code									
0	0 0 0 0 0 0				0	1	0	0	1	0	0	1	0			
0	0 0, 0x0 0, 0x0							2, 0)x2			18, (0x12			
	0, 0x0									14	46, 0x	(92				

Parameters	none
Checksum	SC(0x00) XOR CC(0x92) XOR PX(0x00) = 0x92
Message to send	STX(0x02) - SC(0x00) - CC(0x92) - CHK(0x92)
Positive response	STX(0x02) - SC(0x08) - P1(0x16) - P2(0x05) - P3(0x0A) - P4(0x00) - P5(0x07) - P6(0x00) - P7(0x05) - P8(0x00) - CHK(0x13)

Description of the positive response:

LIN Interface

Param(s)	Description	Example value	Meaning
P1, P2	Bus idle	0x0516 (default)	1302 ms
P3, P4	Frame length 8	0x000A (default)	10 ms
P5, P6	Frame length 4	0x0007 (default)	7 ms
P7, P8	Frame length 2	0x0005 (default)	5 ms

Retrieve Message Retries

This command retrieves a value which indicates the number of retries for a LIN response message causing a "slave not responding" timeout (only when the master status is inactive).

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)								(Contro	ol Co	de (C	C)		
Х	X Sequence Frame Length						Interface Command Code								
0	0 0 0 0 0 0				1	0	0	1	0	0	1	1			
0	0 0, 0x0 0, 0x0					2, 0)x2			19, (0x13				
	0, 0x0									14	47, 0x	(93			

Parameters	none
Checksum	SC(0x00) XOR CC(0x93) XOR PX(0x00) = 0x93
Message to send	STX(0x02) - SC(0x00) - CC(0x93) - CHK(0x93)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. In this example the returned value is the default value 0 for message retries.

Retrieve Scheduler Entries Count

This command retrieves a value which indicates the count of configured and valid entries of the master scheduler in a module. The maximum number of scheduler entries is 50.

LIN Interface

	Sequence Code (SC)								Control Code (CC)								
X	X Sequence Frame Length							Interface Command Code									
0	0 0 0 0 0 0 0				1	0	0	1	0	1	0	0					
0	0 0, 0x0 0, 0x0						2, 0)x2			20, (0x14					
	0, 0x0									14	48, 0x	(94					

Parameters	none
Checksum	SC(0x00) XOR CC(0x94) XOR PX(0x00) = 0x94
Message to send	STX(0x02) - SC(0x00) - CC(0x94) - CHK(0x94)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters. In this example the returned "count of entries" is the default value 0, since as default the scheduler is empty.

Retrieve Scheduler Entry

This command retrieves a couple of values which indicate a configuration of a valid entry from the master scheduler in a module. A scheduler entry is a conjunction of a LIN message ID and its corresponding timestamp. A timestamp is the time difference between two frames measured from its initiation (trailing edge of the signal "sync break" from each frame). The entry to be returned from the scheduler list is given as parameter for this command. The parameter corresponds with the index of the entry in the scheduler list. The first possible scheduler entry index is 1 and the last is 50.

	Sequence Code (SC)							Control Code (CC)							
Х	X Sequence Frame Length					Interface Command Code									
0	0	0 0 0 0 0 0 1				1	0	0 1 0 1 0 1							
0	0 0, 0x0 1, 0x1						2, 0)x2			21, (0x15			
	1, 0x1								14	49, 0>	95				

Parameters	One parameter (one byte) is required to indicate the index of the scheduler entry to be returned. In this example it is assumed that the scheduler has an entry with the following configuration: ID: 0x10, timestamp: 50 ms
Checksum	PX = P1(0x01) = 0x01 SC(0x01) XOR CC(0x95) XOR PX(0x01) = 0x95
Message to send	STX(0x02) - SC(0x01) - CC(0x95) - P1(0x01) - CHK(0x95)
Positive response	STX(0x02) - SC(0x03) - P1(0x32) - P2(0x00) - P3(0x10) - CHK(0x21)

Description of the positive response:

Param(s)	Description	Example value	Meaning
P1, P2	Timestamp	0x0032	50 ms
P3	LIN ID	0x10	LIN ID 0x10

Retrieve RCV Error Counter

This command retrieves the value of the receive error counter of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)								Control Code (CC)							
Х	X Sequence Frame Length						Interfa	ace	Cor	nmar	nd Co	de				
0	0 0 0 0 0 0 0				1	0	0	1	0	1	1	0				
0	0, 0x0 0, 0x0						2, 0)x2			22, (0x16				
	0, 0x0									15	50, 0x	96				

Parameters	none
Checksum	SC(0x00) XOR CC(0x96) XOR PX(0x00) = 0x96
Message to send	STX(0x02) - SC(0x00) - CC(0x96) - CHK(0x96)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters with the value of the RCV error counter. In this example the default value is returned with P1 and P2: 0x0 = 0 errors

Retrieve XMT Error Counter

This command retrieves the value of the transmit error counter of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)						Control Code (CC)								
Х	X Sequence Frame Length			Interface Command Code											
0	0	0	0	0	0	0	0	1	0	0	1	0	1	1	1
0		0, 0x0		0, 0x0			2, 0)x2	23, 0x17						
			0, 0)x0						15	51, 0×	(97			

Parameters	none
Checksum	SC(0x00) XOR CC(0x97) XOR PX(0x00) = 0x97
Message to send	STX(0x02) - SC(0x00) - CC(0x97) - CHK(0x97)
Positive response	STX(0x02) - SC(0x02) - P1(0x00) - P2(0x00) - CHK(0x02)

A positive response has two parameters with the value of the XMT error counter. In this example the default value is returned with P1 and P2: 0x0 = 0 errors

Retrieve All Error Counters

This command retrieves the values of the errors counters of the LIN interface. The returned values are (in this order) from the RCV error counter, XMT error counter, bit error counter, checksum error counter, ID checksum error counter, "Slave not responding" error counter, and "Inconsistent synchronization bytes" error counter. Each value is 2 bytes long.

	Sequence Code (SC)						Control Code (CC)								
Х	X Sequence Frame Length			Interface Command Code											
0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0
0		0, 0x0			0, 0x0			2, 0)x2	24, 0x18					
			0, 0)x0						15	52, 0>	(98			

Parameters	none
Checksum	SC(0x00) XOR CC(0x98) XOR PX(0x00) = 0x98
Message to send	STX(0x02) - SC(0x00) - CC(0x98) - CHK(0x98)
Positive response	STX(0x02) - SC(0x0E) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5(0x00) - P6(0x00) - P7(0x00) - P8(0x00) - P9(0x00) - P10(0x00) - P11(0x00) - P12(0x00) - P13(0x00) - P14(0x00) - CHK(0x0E)

Description of the positive response:

Param(s)	Description	Example value	Meaning	
P1, P2	RCV error counter	0x0 (default)	0 errors	
P3, P4	XMT error counter	0x0 (default)	0 errors	
P5, P6	Bit error counter	0x0 (default)	0 errors	
P7, P8	Checksum error counter	0x0 (default)	0 errors	
P9, P10	ID checksum error counter	0x0 (default)	0 errors	
P11, P12 "Slave not responding" error counter		0x0 (default)	0 errors	
P13, P14 "Inconsistent synchronization bytes" error counter		0x0 (default)	0 errors	

Retrieve Slave ID + Data Configuration Information

This command retrieves information about the slave configuration of a module. As a response to this command the following information is received: the status of the "Slave ID + Data Configuration" field (active or not) and the ID identifying the slave and the configured data associated with that slave ID. The length of the data depends on the slave ID. A LIN ID has a length of 6 bits (0x00 ... 0x3F) and a data length as follows:

ID range	Data length
0x00 to 0x1F	2 bytes
0x20 to 0x2F	4 bytes
0x30 to 0x3F	8 bytes

LIN Interface

	Sequence Code (SC)						Control Code (CC)								
Х	Sequence Frame Length			Interface Command Code											
0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1
0		0, 0x0			0, 0x0			2, 0x2 25, 0x19							
			0, 0	0, 0x0						15	53, 0x	k 99			

Parameters	none
Checksum	SC(0x00) XOR CC(0x99) XOR PX(0x00) = 0x99
Message to send	STX(0x02) - SC(0x00) - CC(0x99) - CHK(0x99)
Positive response	STX(0x02) - SC(0x0A) - P1(0x00) - P2(0x3F) - P3(0xFF) - P4(0xFF) - P5(0xFF) - P6(0xFF) - P7(0xFF) - P8(0xFF) - P9(0xFF) - P10(0xFF) - CHK(0x35)

Description of the positive response:

Param(s)	Description	Example value	Meaning
P1	Field status (0 = disabled, 1 = enabled)	0x00 (default)	disabled
P2	Slave ID	0x3F	Results in data length of 8 bytes
P3 P10	Configuration data (bytes 1 to 8)	each 0xFF (default)	

In this example it is assumed that the lengths of the IDs are correlated to the default lengths described in the table "ID range / Data length" above. A new feature of the module allows you to set any length for any ID. This results in a varying length of a positive response without following the rules in the mentioned table.

Retrieve Bit Rate Recognition for Synchronization Field Status

This command retrieves a value which indicates, if the bit rate recognition is active or not. The automatic bit rate recognition only works for received frames and when a synchronization break was correctly recognized.

LIN Interface

	Sequence Code (SC)							Control Code (CC)							
Х	X Sequence Frame Length			Interfa	ace	Command Code									
0	0	0	0	0	0	0	0	1	0	0	1	1	0	1	0
0	0 0,0x0 0,0x0				2, 0x2 26, 0x1A										
			0, 0)x0						15	54, 0x	9A			

Parameters	none
Checksum	SC(0x00) XOR CC(0x9A) XOR PX(0x00) = 0x9A
Message to send	STX(0x02) - SC(0x00) - CC(0x9A) - CHK(0x9A)
Positive response	STX(0x02) - SC(0x02) - P1(0x01) - P2(0x00) - CHK(0x03)

A positive response has two parameters. In this example the default value for the bit rate recognition field 0x01 (active) is returned.

Retrieve Frame Length

This command retrieves the assigned frame length for one or all 64 LIN message IDs. As shown for the command *Retrieve Slave ID + Data Configuration Information* on page 52 the frame length of a LIN message depends on the ID. An extension on the capabilities of the module lets you set the frame length of any ID from 0 to 8 bytes, independent of the ID (the default value for the frame lengths follows the rule of the ID as mentioned above). For this reason the frame lengths of all IDs or the frame length of a single ID can be retrieved.

This command has two parameters. Depending on the needed data, the parameters are as follows:

P1	P2	Description
0	Not used, ignored	Retrieves the frame lengths of IDs 0x00 to 0x0F
1	Not used, ignored	Retrieves the frame lengths of IDs 0x10 to 0x1F
2	Not used, ignored	Retrieves the frame lengths of IDs 0x20 to 0x2F
3	Not used, ignored	Retrieves the frame lengths of IDs 0x30 to 0x3F
4	LIN ID (0x00 0x3F)	Retrieves the frame length of the ID passed by parameter P2

Case A: Retrieving a set of frame lengths (P1 within 0 to 3)

	Sequence Code (SC)							Control Code (CC)							
X	Sequence Frame Length				Interface Command Code										
0	0	0	0	0	0	1	0	1	0	0	1	1	0	1	0
0		0, 0x0		2, 0x2)x2	27, 0x1B					
	0, 0x0							155, 0x9B							

Parameters	This command needs two parameters (two bytes). The first parameter indicates the range of IDs. The second parameter isn't used, but must be sent. In this example the frame length of the last 16 IDs (0x30 to 0x3F) is retrieved.
Checksum	PX = P1(0x03) XOR P2(0x00) = 0x03 SC(0x02) XOR CC(0x9B) XOR PX(0x03) = 0x9A
Message to send	STX(0x02) - SC(0x02) - CC(0x9B) - P1(0x03) - P2(0x00) - CHK(0x9A)
Positive response	STX(0x02) - SC(0x08) - P1(0x88) - P2(0x88) - P3(0x88) - P4(0x88) - P5(0x88) - P6(0x88) - P7(0x88) - P8(0x88) - CHK(0x08)

A positive response has 8 parameters. In this example the default value for the frame lengths of the IDs 0x30 to 0x3F is returned. Each data byte contains the lengths for two IDs (order: four least significant bits, 4 most significant bits). For example, 0x84 means that one ID (0x16) is 4 bytes and the next one (0x17) is 8 bytes long.

Param(s)	Description	Example value	Meaning			
P1 P8	Length of frames for given IDs	0x88	8 bytes for each frame			

Case B: Retrieving the frame length of a single ID (P1 = 4)

	Sequence Code (SC)							Control Code (CC)						
X	X Sequence Frame Length				Interface Command Code									
0	0	0	0	0	0	1	0	1	0 0 1 1 0 1 0				0	
0	0, 0x0 2, 0x2					2, 0)x2	27, 0x1B						
	0, 0x0								15	55, 0x	¢9Β			

Parameters	This command needs two parameters (two bytes). The first parameter indicates that the second parameter contains an ID. The frame length for this ID shall be returned. In this example the frame length of ID 0x07 is retrieved.
Checksum	PX = P1(0x04) XOR P2(0x07) = 0x03 SC(0x02) XOR CC(0x9B) XOR PX(0x03) = 0x9A
Message to send	STX(0x02) - SC(0x02) - CC(0x9B) - P1(0x04) - P2(0x07) - CHK(0x9A)
Positive response	STX(0x02) - SC(0x02) - P1(0x07) - P2(0x02) - CHK(0x07)

A positive response has two parameters. In this example the default value for the frame length of the ID 0x07 is returned. The first data byte contains the ID and the second data byte the frame length:

Param(s)	Description	Example value	Meaning		
P1	LIN ID	0x07	ID 0x07		
P2	Frame length	0x02 (default)	2 bytes		

Retrieve Checksum Type

This command retrieves the current checksum type for a single or all 64 LIN message IDs. This can either be the classic type (LIN 1.x) or the enhanced type (LIN 2.0). This command has two parameters. Depending on the needed data, the parameters can be as follows:

P1	P2	Description
0	Not used, ignored	Retrieves the checksum type of all 64 LIN IDs (0x00 to 0x3F)
1	LIN ID (0x0 0x3F)	Retrieves the checksum type of the LIN ID passed as parameter P2

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

Case A: Retrieving all checksum types (P1 = 0)

	Sequence Code (SC)								Control Code (CC)							
Х	Sequence Frame Length					Interfa	nterface Command Code									
0	0	0	0	0	0	1	0	1	0	0	1	1	1	0	0	
0		0, 0x0	x0 2, 0x2					2, 0)x2	28, 0x1C						
	2, 0x2							156, 0x9C								

Parameters	This command needs two parameters (two bytes). The first parameter indicates that in this case the checksum types of all IDs are returned. The second parameter isn't used, but must be sent.
Checksum	PX = P1(0x00) XOR P2(0x00) = 0x00 SC(0x02) XOR CC(0x9C) XOR PX(0x00) = 0x9E
Message to send	STX(0x02) - SC(0x02) - CC(0x9C) - P1(0x00) - P2(0x00) - CHK(0x9E)
Positive response	STX(0x02) - SC(0x08) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5(0x00) - P6(0x00) - P7(0x00) - P8(0x00) - CHK(0x08)

A positive response has 8 parameters. In this example the default value for the checksum type of all IDs (classic) is returned. Each data byte contains the format of 8 IDs, beginning with the IDs 0x00 to 0x07 in data byte 1 to IDs 0x38 to 0x3F in data byte 8. IDs are ordered incrementing from the least significant bit. A 0 represents the classic checksum type; a 1 represents the enhanced checksum type.

Param(s)	Description	Example value	Meaning			
P1 P8	Format of checksum for given IDs (each bit)	0b0000000 (default)	Classic checksum type for all IDs			

Case B: Retrieving the checksum type of a single ID (P1 = 1)

	Sequence Code (SC)							Control Code (CC)							
Х	Sequence Frame Length					Interface Command Code									
0	0	0	0	0	0	1	0	1	0 0 1 1 1 0 0					0	
0		0, 0x0		2, 0x2)x2	28, 0x1C					
	2, 0×2						156, 0x9C								

Parameters	This command needs two parameters (two bytes). The first parameter indicates that in this case the checksum type of a specific ID is returned. The second parameter contains the LIN ID. In this example the checksum type for ID 0x07 is retrieved.
Checksum	PX = P1(0x01) XOR P2(0x07) = 0x06 SC(0x02) XOR CC(0x9C) XOR PX(0x06) = 0x98
Message to send	STX(0x02) - SC(0x02) - CC(0x9C) - P1(0x01) - P2(0x07) - CHK(0x98)
Positive response	STX(0x02) - SC(0x02) - P1(0x07) - P2(0x00) - CHK(0x05)

Description of the positive response:

Param(s)	Description	Example value	Meaning			
P1	LIN ID	0x07	LIN ID 0x07			
P2	Checksum type	0x00 (default)	Classic checksum type			

Retrieve CAN ID for Slave Activation

This command retrieves the configured CAN ID used to activate a module as LIN slave through CAN messaging as well as an indication, if the CAN ID is 11 or 29 bits long and if the status of this field is active.

	Sequence Code (SC)							Control Code (CC)							
Х	Sequence Frame Length				Interfa	ce	Command Code								
0	0	0	0	0	0	0	0	1 0 0 1 1 1 0				0	1		
0		0, 0x0 0, 0x0						2, 0)x2	29, 0x1D					
	0, 0x0									15	7, 0x	9D			

Parameters	none
Checksum	SC(0x02) XOR CC(0x9D) XOR PX(0x00) = 0x9D
Message to send	STX(0x02) - SC(0x00) - CC(0x9D) - CHK(0x9D)
Positive response	STX(0x02) – SC(0x04) – P1(0xF0) – P2(0x07) – P3(0x00) – P4(0x00) – CHK(0xF3)

Description of the positive response:

Param(s)	Description	Example value	Meaning
P1	Least significant byte of the CAN ID	0×F0	CAN ID 0x07F0
P2	2 nd byte of the CAN ID (only 3 bits for 11-bit CAN ID)	0×07	
P3	3 rd byte of the CAN ID (only 29-bit CAN ID)	0x00	
P4	Bits 0 to 4: Most significant part of 29-bit CAN ID Bit 5: Not used Bit 6: Slave active Bit 7: Extended CAN ID	0x00	Slave not active Standard CAN ID (11 bits)

LIN Interface

2.4.3 Configuration Commands

Set Activation Status	60
Set Bit Rate	61
Set Forward Mask	62
Set Filter Mask	63
Set Filter Code	64
Set Master Status	65
Set LIN Bus Termination (Master Termination)	66
Set Message Transmission Timeouts	66
Set Message Retries	67
Insert Scheduler Entry	68
Set Slave ID + Data Configuration	69
Configure Bit Rate Recognition for Synchronization	
Field	71
Set Frame Length	71
Set Checksum Type	75
Set CAN ID for Slave Activation	77
Set Slave Mask Status	78

Set Activation Status

This command sets a value in the module which indicates, if the CAN features are active.

	Sequence Code (SC)								Control Code (CC)							
X	X Sequence Frame Length						Interfa	ace	Cor	nmai	nd Co	de				
0	0	0	0	0	0	0	1	1 0 0 1 1 1 1					0			
0		0, 0x0			1, (0x1		2, 0)x2	30, 0x1E						
	1, 0x1									1!	58, 0x	9E				

Parameters	One parameter (one byte) is required in order to specify the activation status of the LIN interface. This parameter byte works as a boolean value. If the parameter is 0, the interface will be deactivated, otherwise it will be activated. In the example the interface will be activated.
Checksum	P1 = 0x01 SC(0x01) XOR CC(0x9E) XOR PX(0x01) = 0x9E
Message to send	STX(0x02) - SC(0x01) - CC(0x9E) - P1(0x01) - CHK(0x9E)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 Error Messages on page 104.

Note: The activation of the LIN interface does not require an initialization using the initialization command.

Set Bit Rate

This command directs the module to change the bit rate used by the LIN interface. The possible values for a LIN bit rate are in the range of 1000 to 20000 kBit/s.

The data to be sent and received starts with the LSB. Example: 0x12C0 = P1:0xC0 and P2:0x12

	Sequence Code (SC)							Control Code (CC)							
Х	X Sequence Frame Length					Interfa	асе	Cor	nmar	nd Co	de				
0	0	0	0	0	0	1	0	1 0 0 1 1 1 1					1	1	
0		0, 0x0			2, ()x2		2, 0)x2	31, 0x1F					
			2, 0)x2						15	59, 0×	ι9F			

Parameters	Two parameters (two bytes) are required in order to specify the desired bit rate. In this example the default bit rate of the LIN interface is used: 19200 kBit/s (0x4B00).
Checksum	PX = P1(0x00) XOR P2(0x4B) = 0x4B SC(0x02) XOR CC(0x9F) XOR PX(0x4B) = 0xD6
Message to send	STX(0x02) - SC(0x02) - CC(0x9F) - P1(0x00) - P2(0x4B) - CHK(0xD6)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 Error Messages on page 104.

Note: The configured bit rate differs from the used bit rate. The used bit rate is the speed being used to send and receive messages from/to the module in a determined time. A configured bit rate is the result of sending a bit rate configuration message causing the change in the bit rate but not initializing it. To activate the new configured value refer to section 2.4.1 Initialization Commands on page 38.

Set Forward Mask

This command sets the forward mask of the LIN interface in a module. This mask tells an interface to which other interface(s) the received messages are forwarded, and if error information should be monitored. The errors can be redirected to the RS-232 and/or CAN interface, too.

The forward mask value is a bit combination (bitwise-OR operation) of the values in the following table:

Mask value	Meaning
0x80	Forward error information to RS-232 interface
0x40	Forward error information to CAN interface
0x04	Forward LIN messages to RS-232 interface
0x01	Forward LIN messages to CAN interface

For example, a forward mask of 0xC5 means that the error information as well as the messages of the LIN interface will be forwarded to both the CAN and the RS-232 interface.

Note: In order to forward error information to the RS-232 interface (mask value 0x80) the corresponding message forwarding (0x04) must be activated, too.

LIN Interface

	Sequence Code (SC)								Control Code (CC)						
Х	X Sequence Frame Length					Interfa	ace	Cor	nmai	nd Co	de				
0	0	0	0	0	0	0	1	1 0 1 0 0 0 0				0	0		
0		0, 0x0			1, (0x1		2, 0)x2	32, 0x20					
	1, 0x1									16	60, 0x	:A0			

Parameters	One parameter (one byte) is required. In this example the mask to monitor errors and, if any, to forward it to the CAN interface is used. The value to send is 0x40 (forward error information to CAN interface).
Checksum	P1 = 0x40 SC(0x01) XOR CC(0xA0) XOR PX(0x40) = 0xE1
Message to send	STX(0x02) - SC(0x01) - CC(0xA0) - P1(0x40) - CHK(0xE1)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Set Filter Mask

This command sets an acceptance mask for the LIN interface in a module. The LIN acceptance mask, in conjunction with the acceptance code, is a filter used to tell the LIN interface which messages are received. This filter is referring to the ID of a LIN message.

	Sequence Code (SC)							Control Code (CC)							
X Sequence Frame Length					Interface Command Code										
0	0 0 0 0 0 1				1	0	1	0	0	0	0	1			
0	0 0, 0x0 1 ₍₁₎ , 0x1 ₁₆₎					2, 0x2 33, 0x21 ₍₆₎									
	1, 0x1								16	31, 0x	:A1				

Parameters	One parameter (one byte) is required. An acceptance mask is 1 byte long (a LIN message ID is one byte long). In this example the default value for the LIN filter mask (0xFF) is used.
Checksum	PX = P1(0xFF) = 0xFF SC(0x01) XOR CC(0xA1) XOR PX(0xFF) = 0x5F
Message to send	STX(0x02) - SC(0x01) - CC(0xA1) - P1(0xFF) - CHK(0x5F)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Filter Code

This command sets the acceptance code of the LIN interface in a module. The LIN acceptance code, in conjunction with the acceptance mask, is a filter used to tell the LIN interface which messages are received. This filter is referring to the ID of a LIN message.

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interfa	nterface Command Code									
0	0	0 0 0 0 0 1				1	0	1	0	0	0	1	0			
0	0 0, 0x0 1, 0x1							1, 0x1 34, 0x22								
	1, 0x1						162, 0xA2									

Parameters	One parameter (one byte) is required. An acceptance code is 1 byte long (a LIN message ID is one byte long). In this example the default value for the LIN filter code (0x00) is used.
Checksum	PX = P1(0x00) = 0x00 SC(0x01) XOR CC(0xA2) XOR PX(0x00) = 0xA3
Message to send	STX(0x02) - SC(0x01) - CC(0xA2) - P1(0x00) - CHK(0xA3)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Master Status

This command sets the status of the LIN master in a module. The activation of this feature means that the master scheduler has entries and they are transmitted. If the scheduler is empty, trying to activate the master will return an error.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)							
X Sequence Frame Length						Interfa	ace	e Command Code							
0	0	0	0	0	0 0 0 1				0	1	0	0	1	0	0
0	0 0, 0x0 1, 0x1					2, 0x2 36, 0x24									
	1, 0x1						164, 0xA4								

Parameters	One parameter (one byte) is required in order to specify the activation status of the LIN master. This parameter byte works as a boolean value. If the parameter is 0, the master will be inactive, otherwise it will be active. In the example the master is active and it is assumed that the master scheduler has at least one valid entry. For more information about inserting a new scheduler entry into the master scheduler see command <i>Insert Scheduler Entry</i> on page 68.
Checksum	PX = P1(0x01) = 0x01 SC(0x01) XOR CC(0xA4) XOR PX(0x01) = 0xA4
Message to send	STX(0x02) - SC(0x01) - CC(0xA4) - P1(0x01) - CHK(0xA4)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set LIN Bus Termination (Master Termination)

This command sets the module termination to Master or Slave. The default termination for a module is Slave.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interfa	Interface Command Code									
0	0	0 0 0 0 0 1				1	0	1	0	0	1	0	1			
0	0 0, 0x0 1, 0x1							2, 0x2 37, 0x25								
	1, 0x1								16	35, 0x	:A5					

Parameters	One parameter (one byte) is required in order to specify the termination of the module. This parameter byte works as a boolean value. If the parameter is 0, the termination is set to Slave (default), otherwise it is set to Master. In the example, the termination is set to Master using the value 0x01 as parameter.
Checksum	PX = P1(0x01) = 0x01 SC(0x01) XOR CC(0xA5) XOR PX(0x01) = 0xA5
Message to send	STX(0x02) - SC(0x01) - CC(0xA5) - PX(0x01) - CHK(0xA5)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Message Transmission Timeouts

This command sets the timeouts (in milliseconds) for the transmission of the different kind of messages. The timeouts to set are for bus idle messages as well as messages with frame lengths 8, 4, 2 bytes. Every timeout has a length of 2 bytes resulting in 8 needed parameters. The order for the parameters is:

- ─ P1 P2: bus idle
- P3 P4: frame length 8
- ─ P5 P6: frame length 4

P7 – P8: frame length 2

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length					Interfa	nterface Command Code										
0	0	0	0	1	0	0	0	1	0	1	0	0	1	1	0	
0	0 0, 0x0 8, 0x8					2, 0x2 38, 0x26										
	8, 0x8									16	66, 0x	:A6				

Parameters	Eight parameters (8 bytes) are required in order to specify all 4 timeouts (two bytes per timeout starting with the LSB). In this example the default timeouts are set:
	□ Bus idle: 1302 ms (0x0516)
	Frame length 8: 10 ms (0x000A)
	Frame length 4: 7 ms (0x0007)
	Frame length 2: 5 ms (0x0005)
Checksum	PX = P1(0x16) XOR P2(0x05) XOR P3(0x0A) XOR P4(0x00) XOR P5 (0x07) XOR P6(0x00) XOR P7(0x05) XOR P8(0x00) = 0x1B SC(0x08) XOR CC(0xA6) XOR PX(0x1B) = 0xB5
Message to send	STX(0x02) - SC(0x08) - CC(0xA6) - P1(0x16) - P2(0x05) - P3(0x0A) - P4(0x00) - P5(0x07) - P6(0x00) - P7(0x05) - P8(0x00) - CHK(0x5B)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Message Retries

This command sets the number of retries for a LIN response message which causes a "Slave not responding" timeout (only when the master status is inactive). The default value is 0 (no repetitions). The maximum value is 255 retries.

	Sequence Code (SC)								Control Code (CC)								
X Sequence Frame Length							Interface Command Code										
0	0	0	0	0	0	0	1	1	0	1	0	0	1	1	0		
0	0 0, 0x0 1, 0x1					2, 0x2 39, 0x27											
	1, 0x1						167, 0xA7										

Parameters	One parameter (one byte) is required in order to specify the number of retries for LIN response messages. In this example this field will be set to its maximum value which is 255 retries (0xFF).
Checksum	PX = P1(0xFF) = 0xFF SC(0x01) XOR CC(0xA7) XOR PX(0xFF) = 0x59
Message to send	STX(0x02) - SC(0x01) - CC(0xA7) - P1(0xFF) - CHK(0x59)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Insert Scheduler Entry

This command inserts a new scheduler entry into the master scheduler in a module. A scheduler entry is a combination of an LIN message ID and its corresponding timestamp. A timestamp is the time difference between two frames measured from their initiation (falling edge of the signal "Sync. break" of a frame), in other words, the frequency in which a frame is transmitted. By using this command new entries can be included in the scheduler. Up to 50 entries are permitted. An existing entry can not be modified. In order to make changes, the whole list must be erased and filled again with the modified values. The length of the LIN message ID is 1 byte and of the timestamp 2 bytes.

LIN Interface

Sequence Code (SC)									(Contro	ol Co	de (C	C)		
Х	X Sequence Frame Length					Interfa	ace	Cor	nmai	nd Co	de				
0	0	0	0	0	0	1	1 1 0 1 0 1 0 0				0				
0		0, 0x0		3, 0x3				2, 0	2, 0x2 40, 0x28						
	3, 0x3									16	38, 0x	:A8			

Parameters	Three parameters (three bytes) are required to indicate a valid LIN scheduler entry, one for the LIN message ID and two for its timestamp. In this example an entry is inserted in the scheduler conformed by an ID 0x05 and a timestamp of 100 ms (0x64). The order of the parameters is as follows: — Timestamp: 100 ms (0x0064)					
	∟ LIN ID: 0x05					
Checksum	PX = P1(0x64) XOR P2(0x00) XOR P3(0x05) = 0x01 SC(0x03) XOR CC(0xA8) XOR PX(0x61) = 0xCA					
Message to send	STX(0x02) - SC(0x03) - CC(0xA8) - P1(0x64) - P2(0x00) - P3(0x05) - CHK(0xCA)					
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)					

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Slave ID + Data Configuration

This command sets the slave configuration of a module. This configuration is formed by the status of the "Slave ID + Data Configuration" field (active or not). This ID identifies the slave and the configured data associated with the slave ID. The length of the data depends on the slave ID. If the used frame length is the default, the length to be used can be found using the following table:

ID Range	Data Length
0x00 to 0x1F	2 Bytes
0x20 to 0x2F	4 Bytes
0x30 to 0x3F	8 Bytes

If the frame length of the used LIN ID was configured with another length, than that length must be used; otherwise this command will

fail. For more information about reading the frame length see command *Retrieve Frame Length* on page 54. For frame length configuration see command *Set Frame Length* on page 71.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)								(Contro	ol Co	de (C	C)		
X	X Sequence Frame Length					Interface Command Code									
0	0	0	0	0	1	0	0	1 0 1 0 1 0 0				1			
0		0, 0x0		4, 0x4				2, 0	2, 0x2 41, 0x29						
	4, 0x4								16	59, 0x	:A9				

Parameters	In this example the ID 0x010 is set as slave ID. The use of the default length is assumed. The field "Slave ID + Data Configuration" is set active, data[0] to 0x1A, and data[1] to 0xBB (for this case 2 data bytes, see the table above). Therefore four parameters (four bytes) are required to indicate the activation status of this field (one byte), the ID to be set (one byte), and the data bytes (2 bytes). The order of the parameters is as follows: Field status: active (1) LIN ID: 0x10 Data byte 0: 0x1A Data byte 1: 0xBB
Checksum	PX = P1(0x01) XOR P2(0x10) XOR P3(0x1A) XOR P4(0xBB) = 0xB0 SC(0x04) XOR CC(0xA9) XOR PX(0xB0) = 0x1D
Message to send	STX(0x02) - SC(0x04) - CC(0xA9) - P1(0x01) - P2(0x10) - P3(0x1A) - P4(0xBB) - CHK(0x1D)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Configure Bit Rate Recognition for Synchronization Field

This command sets the bit rate recognition status. The automatic bit rate recognition only works for frames received by the module and when a synchronization break is correctly recognized.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

Sequence Code (SC)								(Contro	ol Co	de (C	C)			
Х	X Sequence Frame Length					Interface Command Code									
0	0	0	0	0 0 0 1			1	1	0	1	0	1	0	1	0
0		0, 0x0		1, 0x1				2, 0x2 42, 0x2A							
	1, 0x1								17	70, 0x	AA				

Parameters	One parameter (one byte) is required in order to specify the status of the automatic bit rate recognition feature of the module. If the parameter is 1, this feature is activated (default), else it is deactivated. In this example the bit rate recognition is activated.
Checksum	PX = P1(0x01) = 0x01 SC(0x01) XOR CC(0xAA) XOR PX(0x01) = 0xAA
Message to send	STX(0x02) - SC(0x01) - CC(0xAA) - P1(0x01) - CHK(0xAA)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Frame Length

This command sets the frame length of one or all 64 LIN message IDs. As shown for the command *Set Slave ID + Data Configuration* on page 69, the frame length of a LIN message depends on the ID. An extension on the capabilities of the module makes it possible to set the frame length of any ID from 0 to 8 bytes (the default value for the frame lengths follows the rule for the ID as mentioned above).

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

This command can be implemented in two ways. The first is setting the frame length for ranges of IDs in only one operation and the second is setting the frame length for a single ID. Depending on the kind of operation, the parameter count is either 3 bytes (for single ID) or 9 bytes (for range of IDs).

Assigning a frame length to a range of IDs

There are 4 ranges of IDs (from 0 to 3). Each range of IDs configures

the frame length for 16 IDs of the 64 existing in a module. The first parameter (P1) of a frame length assignment indicates the range of IDs being configured. The frame length of those 16 IDs is assigned by using a parameter (one byte) for a pair of IDs (8 bytes, P2 to P9). The following tables show the ID ranges:

Range	ID range								
code (P1)	from	to							
0	ID 00 (0x00)	ID 15 (0x0F)							
1	ID 16 (0x10)	ID 31 (0x1F)							
2	ID 32 (0x20)	ID 47 (0x2F)							
3	ID 48 (0x30)	ID 63 (0x3F)							

According to the selected range, the next 8 parameters (8 bytes) contain the frame length of the associated 16 IDs of that range. 4 bits of each parameter express the frame length of one ID. The following table shows which bits represent the frame length of an ID:

P1	Bits of P2 P9	P2	P3	P4	P5	P6	P7	P8	P9
0	0 3	ID 00	ID 02	ID 04	ID 06	ID 08	ID 10	ID 12	ID 14
	4 7	ID 01	ID 03	ID 05	ID 07	ID 09	ID 11	ID 13	ID 15
1	0 3	ID 16	ID 18	ID 20	ID 22	ID 24	ID 26	ID 28	ID 30
	4 7	ID 17	ID 19	ID 21	ID 23	ID 25	ID 27	ID 29	ID 31
2	0 3	ID 32	ID 34	ID 36	ID 38	ID 40	ID 42	ID 44	ID 46
	4 7	ID 33	ID 35	ID 37	ID 39	ID 41	ID 43	ID 45	ID 47
3	0 3	ID 48	ID 50	ID 52	ID 54	ID 56	ID 58	ID 60	ID 62
	4 7	ID 49	ID 51	ID 53	ID 55	ID 57	ID 59	ID 61	ID 63

For example, the selected range is 0 and the desired frame length for each ID should be 8, except the IDs 10 (4 bytes) and ID 11 (6 bytes). The parameters then are:

P2	P3	P4	P5	P6	P7	P8	P9
0x88	0x88	0x88	0x88	0x88	0× 64	0x88	0x88

	Sequence Code (SC)							Control Code (CC)							
Х	X Sequence Frame Length					Interface Command Code									
0	0	0	0	1	0	0	1	1	0	1	0	1	0	1	1
0		0, 0x0			9, (0x9		2, 0x2 43, 0x2B							
	9, 0x9									17	1, 0x	AΒ			

Parameters	This command needs 9 parameters (9 bytes). The first parameter indicates the range of IDs used for frame length setting. The remaining 8 parameters P2 to P9 indicate the frame length for the 16 IDs associated with the selected range. In this example the frame lengths for the last 16 IDs (range number 3) are set to their default value (8 bytes).
Checksum	PX = P1(0x03) XOR P2(0x88) XOR P3(0x88) XOR P4(0x88) XOR P5(0x88) XOR P6(0x88) XOR P7(0x88) XOR P8(0x88) XOR P9(0x88) = 0x03 SC(0x09) XOR CC(0xAB) XOR PX(0x03) = 0xA1
Message to send	STX(0x02) - SC(0x09) - CC(0xAB) - P1(0x03) - P2(0x88) - P3(0x88) - P4(0x88) - P5(0x88) - P6(0x88) - P7(0x88) - P8(0x88) - P9(0x88) - CHK(0xA1)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 Error Messages on page 104.

Assigning a frame length to a single ID

To set the frame length for a single ID the parameter 1 (P1) must be set to 4. In this case the command accepts only two further parameters (P2 and P3). P2 is used to identify the ID, P3 is used to specify the corresponding frame length. The value of P3 must be in the range of 1 to 8, otherwise this command will return an error. If you want to set IDs to a frame length of 0, you must use the assignment by range (see above).

		Sequ	ence	Code	(SC)			Control Code (CC)								
Х	X Sequence Frame Length							Interface Command Code								
0	0	0	0	0	0	1	1	1	0	1 0 1 0 1 1						
0		0, 0x0			3, (0x3		2, 0x2 43, 0x2B								
	3, 0x3							171, 0xAB								

Parameters	This command needs 3 parameters (3 bytes). The first parameter has a value of 4 (0x04) indicating that a single ID is configured. The second parameter indicates the desired ID (0x00 to 0x3F). The third parameter indicates the length of the frame (0x01 to 0x08). In this example the ID 64 (0x3F) is set to a frame length of 5.
Checksum	PX = P1(0x04) XOR P2(0x3F) XOR P3(0x05) = 0x3E SC(0x03) XOR CC(0xAB) XOR PX(0x3E) = 0x96
Message to send	STX(0x02) - SC(0x03) - CC(0xAB) - P1(0x04) - P2(0x3F) - P3(0x05) - CHK(0x96)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Note: If an ID also used by the command "Slave ID + Data" Configuration" is modified, that setting is changed, too. If the frame length is set to a number smaller than that used by "Slave ID + Data Configuration", its data will be truncated. If

the frame length is set to a larger number, the data will be padded with the value 0xFF.

Set Checksum Type

This command sets the checksum type for a single or all 64 LIN message IDs. This can be either the classic format (LIN 1.x) or the enhanced format (LIN 2.0).

This command can be implemented in two different ways. The first is setting the checksum type for all IDs in a single operation. The second is setting the checksum type for a single ID. Depending on the kind of operation, the parameter count is either 3 bytes (for single ID) or 9 bytes (for all IDs).

Assigning a checksum type to all IDs

If the first parameter (P1) is 0, the checksum type is set for all IDs. The next 8 parameters (8 bytes) contain the checksum type for the IDs, using each bit of each data byte as boolean variable (0 means classic format and 1 means enhanced format). The following table shows the place of each ID in the eight data bytes:

Param	Bit ass	Bit assignment for LIN IDs												
	7	6	5	4	3	2	1	0						
P2	0×07	0x06	0x05	0x04	0x03	0x02	0x01	0x00						
P3	0x0F	0x0E	0x0D	0x0C	0x0B	0x0A	0x09	0x08						
P4	0x17	0x16	0x15	0x14	0x13	0x12	0x11	0x10						
P5	0x1F	0x1E	0x1D	0x1C	0x1B	0x1A	0x19	0x18						
P6	0x27	0x26	0x25	0x24	0x23	0x22	0x21	0x20						
P7	0x2F	0x2E	0x2D	0x2C	0x2B	0x2A	0x29	0x28						
P8	0x37	0x36	0x35	0x34	0x33	0x32	0x31	0x30						
P9	0x3F	0x3E	0x3D	0x3C	0x3B	0x3A	0x39	0x38						

For example, setting the format for the first 8 IDs (using P2) to enhanced except for ID 3 the parameter P2 must be 0x08 (0b00001000). The bit set to 1 corresponds to ID 3 (0x03) which will have the enhanced checksum type.

	Sequence Code (SC)							Control Code (CC)							
Х	X Sequence Frame Length						Interface Command Code								
0	0	0	0	1	1 0 0 1 1 0 1 0 1								1	0	0
0		0, 0x0			9, (0x9		2, 0x2 44, 0x2C							
	9, 0x9									17	⁷ 2, 0x	AC			

Parameters	This command needs 9 parameters (9 bytes). The first parameter indicates that the checksum type for all IDs is set. The remaining 8 parameters P2 to P9 indicate the checksum type for the IDs. In this example the checksum type for the IDs 0 to 31 is set to their default value (classic), for the IDs 32 to 64 to enhanced.
Checksum	PX = P1(0x00) XOR P2(0x00) XOR P3(0x00) XOR P4(0x00) XOR P5(0x00) XOR P6(0xFF) XOR P7(0xFF) XOR P8(0xFF) XOR P9(0xFF) = 0x00 SC(0x09) XOR CC(0xAC) XOR PX(0x00) = 0xA5
Message to send	STX(0x02) - SC(0x09) - CC(0xAC) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5(0x00) - P6(0xFF) - P7(0xFF) - P8(0xFF) - P9(0xFF) - CHK(0xA5)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Assigning a checksum type to a single ID

To set a frame length for a single ID the parameter P1 must be set to 1. In this case the command needs two additional parameters (P2 and P3). P2 is used to identify the ID. P3 is used to specify the checksum type. The value of this parameter must be either 0 for classic or 1 for enhanced, otherwise this command will return an error.

	Sequence Code (SC)								Control Code (CC)							
X	X Sequence Frame Length						Interface Command Code									
0	0	0	0	0	0	1	1	1	0	1	0	1	1	0	0	
0	0, 0x0 3, 0x3							2, 0x2 44, 0x2C								
	3, 0x3									17	⁷ 2, 0x	AC				

Parameters	This command needs 3 parameters (3 bytes). The first parameter has a value of 1 (0x01) which indicates that a single ID is configured. The second parameter has the desired ID (0x00 to 0x3F). The third parameter has the format of the frame (0x00 for classic or 0x01 for enhanced). In this example the ID 64 (0x3F) is set to the enhanced checksum type.
Checksum	PX = P1(0x01) XOR P2(0x3F) XOR P3(0x01) = 0x3F SC(0x03) XOR CC(0xAC) XOR PX(0x3F) = 0x90
Message to send	STX(0x02) - SC(0x03) - CC(0xAC) - P1(0x01) - P2(0x3F) - P3(0x01) - CHK(0x90)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set CAN ID for Slave Activation

This command sets the CAN ID used to activate a module as LIN slave through CAN messaging and its status (active or inactive).

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

		Sequ	ence (Code	(SC)			Control Code (CC)								
Х	X Sequence Frame Length						Interface Command Code									
0	0	0	0	0	1	0	0	1	0	1	1 0 1 1 0 1					
0		0, 0x0			4, (0x4		2, 0x2 45, 0x2D								
	4, 0x4							173, 0xAD								

Parameters	32 bit		re required. The 4 bytes I are each used as boole figuration:							
	Bit	Set to 1	Set to 0							
	7	Extended CAN ID (29 bits)	Standard CAN ID (11 bits)							
	6	Feature is enabled	Feature is disabled							
	5	5 Reserved								
	For ex and to P1(0x0 CAN II	ample, to represent the activate this feature, CD), P2(0xBC), P3(0xA	s value identify the CAN ne CAN ID 0x1AABBCCD the parameters must be B), P4(0xDA). In this exalue (ID: 0x7F0, length:) (29 bits e: ample th						
Checksum	PX = P1(0xF0) XOR P2(0x07) XOR P3(0x00) XOR P4(0x 0xF7 SC(0x04) XOR CC(0xAD) XOR PX(0xF7) = 0x5E									
Message to send	,	x02) - SC(0x04) - CC(0 00) - P4(0x00) - CHK(0	0xAD) – P1(0xF0) – P2(0x x5E)	к07) –						
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)									

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Set Slave Mask Status

This command sets the status (active or Inactive) of the slave mask of one or all LIN message IDs. The command can be implemented in two different ways. The first is setting the slave mask status for all IDs. The second is setting the slave mask status for a single ID. Depending on the kind of operation, the parameter count is either 3 bytes (for a single ID) or 9 bytes (for all IDs).

Assigning the Slave Mask Status to all IDs If the first parameter (P1) is 0, the slave mask status is set for all IDs. The next 8 parameters (8 bytes) contain the slave mask status for the IDs, using each bit of each data byte as boolean variable (0

means inactive and 1 means active). The following table shows the place of each ID in the eight data bytes:

Param	Bit ass	Bit assignment for LIN IDs													
	7	6	5	4	3	2	1	0							
P2	0x07	0x06	0x05	0x04	0x03	0x02	0x01	0x00							
P3	0x0F	0x0E	0x0D	0x0C	0x0B	0x0A	0x09	0x08							
P4	0x17	0x16	0x15	0x14	0x13	0x12	0x11	0x10							
P5	0x1F	0x1E	0x1D	0x1C	0x1B	0x1A	0x19	0x18							
P6	0x27	0x26	0x25	0x24	0x23	0x22	0x21	0x20							
P7	0x2F	0x2E	0x2D	0x2C	0x2B	0x2A	0x29	0x28							
P8	0x37	0x36	0x35	0x34	0x33	0x32	0x31	0x30							
P9	0x3F	0x3E	0x3D	0x3C	0x3B	0x3A	0x39	0x38							

For example, if you send P4 with a value of 0x82 (0b10000010), this means that the slave mask of the IDs 16, 18, 19, 20, 21, and 22 are set inactive and the IDs 17 (0x11) and 23 (0x17) are set active.

The data to be received starts with the LSB. Example: 0x011C = P1:0x1C and P2:0x01

		Sequ	ence (Code	(SC)			Control Code (CC)							
X Sequence Frame Length							Interface Command Code								
0	0 0 0 1 0 0 1						1	0	1	0	1	1	1	0	
0		0, 0x0			9, (0x9		2, 0)x2			46, 0)x2E		
			9, 0	x9						17	4, 0x	٩E			

Parameters	This command needs 9 parameters (9 bytes). The first parameter indicates that the slave mask status for all IDs is set. The remaining 8 parameters P2 to P9 indicate the slave mask status for the IDs. In this example the slave mask status for the IDs 0 to 31 is set to their default value (inactive).
Checksum	PX = P1(0x00) XOR P2(0x00) XOR P3(0x00) XOR P4(0x00) XOR P5(0x00) XOR P6(0x00) XOR P7(0x00) XOR P8(0x00) XOR P9(0x00) = 0x00 SC(0x09) XOR CC(0xAE) XOR PX(0x00) = 0xA7
Message to send	STX(0x02) - SC(0x09) - CC(0xAE) - P1(0x00) - P2(0x00) - P3(0x00) - P4(0x00) - P5(0x00) - P6(0x00) - P7(0x00) - P8(0x00) - P9(0x00) - CHK(0xA7)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Assigning the Slave Mask Status to a Single ID To set a slave mask status for a single ID the parameter P1 must be set to 1. In this case the command needs two additional parameters (P2 and P3). P2 is used to identify the ID. P3 is used to specify the status. The value of this parameter must be either 0 for Inactive or 1 for Active, otherwise this command will return an error.

	Sequence Code (SC)								Control Code (CC)							
Х	X Sequence Frame Length							Interface Command Code								
0	0 0 0 0 0 1 1						1	0	1	0	1	1	1	0		
0		0, 0x0			3, (0x3		2, 0)x2			46, ()x2E			
	3, 0x3									17	4, 0x	4E				

Parameters	This command needs 3 parameters (3 bytes). The first parameter has a value of 1 (0x01) which indicates that a single ID is configured. The second parameter has the desired ID (0x00 to 0x3F). The third parameter has the status of slave mask (0x00 for Inactive or 0x01 for Active). In this example the slave mask of ID 64 (0x3F) is set to active.
Checksum	PX = P1(0x01) XOR P2(0x3F) XOR P3(0x01) = 0x3F SC(0x03) XOR CC(0xAE) XOR PX(0x3F) = 0x92
Message to send	STX(0x02) - SC(0x03) - CC(0xAE) - P1(0x01) - P2(0x3F) - P3(0x01) - CHK(0x92)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

LIN Interface

2.4.4 Reset/Erase Commands

Reset	Message Transmission Timeouts	82
Erase	Master Scheduler List	83
Reset	RCV Error Counter	83
Reset	XMT Error Counter	84
Reset	Bit Error Counter	85
Reset	Checksum Error Counter	85
Reset	ID Checksum Error Counter	86
Reset	"Slave not responding" Error Counter	86
Reset	Inconsistent Synchronization Bytes Counter	87
	All Error Counters	88

Reset Message Transmission Timeouts

This command directs the module to reset the timeouts for the different LIN transmission messages. There are timeouts for bus idle messages as well as messages with frame length 8, 4, and 2 bytes. After reset, these timouts will contain the default values:

Bus idle: 0x516 = 1302 ms

Frame length 8: 0x0A = 10 ms

Frame length 4: 0x07 = 7 ms

Frame length 2: 0x05 = 5 ms

The data to be received starts with the LSB. Example: 0x1 = P1:0x01and P2:0x00

		Sequ	ence	Code	(SC)			Control Code (CC)							
X	X Sequence Frame Length							Interface Command Code							
0	0	0 0 0 0 0 0						1	0	1	1	0	0	1	0
0		0, 0x0			0, 0)x0		2 , 0x2 50, 0x32							
	0, 0x0									17	78, 0x	B2			

Parameters	None
Checksum	SC(0x00) XOR $CC(0xB2)$ XOR $PX(0x00) = 0xB2$
Message to send	STX(0x02) - SC(0x00) - CC(0xB2) - CHK(0xB2)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Erase Master Scheduler List

This command directs the module to remove all entries from the master scheduler in a module. If the master is active, it is set to inactive. The scheduler entries cannot be recovered afterwards.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

		Sequ	ence	Code	(SC)			Control Code (CC)							
X Sequence Frame Length						Interface Command Code									
0	0	0 0 0 0 0 0						1	0	1	1	0	0	1	1
0		0, 0x0			0, 0)x0		2, 0x2 51, 0x33							
	0, 0x0									17	79, 0x	:B3			

Parameters	None
Checksum	SC(0x00) XOR CC(0xB3) XOR PX(0x00) = 0xB3
Message to send	STX(0x02) - SC(0x00) - CC(0xB3) - CHK(0xB3)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset RCV Error Counter

This command directs the module to reset the counter of the reception errors of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

LIN Interface

		Sequ	ence	Code	(SC)			Control Code (CC)								
X Sequence Frame Length							Interface Command Code									
0	0	0 0 0 0 0 0 0						1	0	1	1	0	1	0	0	
0		0, 0x0			0, (0x0		2, 0x2 52, 0x34								
	0, 0x0									18	30, 0×	B4				

Parameters	None
Checksum	SC(0x00) XOR CC(0xB4) XOR PX(0x00) = 0xB4
Message to send	STX(0x02) - SC(0x00) - CC(0xB4) - CHK(0xB4)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Reset XMT Error Counter

This command directs the module to reset the counter for transmission errors of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interface Command Code										
0	0 0 0 0 0 0						1	0	1	1	0	1	0	1		
0		0, 0x0			0, (0x0		2, 0x2 53, 0x35								
	0, 0x0								18	31, 0×	B5					

Parameters	None
Checksum	SC(0x00) XOR CC(0xB5) XOR PX(0x00) = 0xB5
Message to send	STX(0x02) - SC(0x00) - CC(0xB5) - CHK(0xB5)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 Error Messages on page 104.

Reset Bit Error Counter

This command directs the module to reset the counter for bit errors of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interface Command Code										
0	0 0 0 0 0 0						0	1	0	1	1	0	1	1	0	
0		0, 0x0			0, (0x0		2, 0x2 54, 0x36								
	0, 0x0								18	32, 0×	B6					

Parameters	None
Checksum	SC(0x00) XOR CC(0xB6) XOR PX(0x00) = 0xB6
Message to send	STX(0x02) - SC(0x00) - CC(0xB6) - CHK(0xB6)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset Checksum Error Counter

This command directs the module to reset the counter for checksum errors of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)						Control Code (CC)								
X Sequence Frame Length						Interface Command Code									
0	0 0 0 0 0 0 0						0	1	0	1	1	0	1	1	1
0		0, 0x0			0, 0	0x0		2, 0x2 55, 0x37							
	0, 0x0								18	33, 0x	B7				

Parameters	None
Checksum	SC(0x00) XOR CC(0xB7) XOR PX(0x00) = 0xB7
Message to send	STX(0x02) - SC(0x00) - CC(0xB7) - CHK(0xB7)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset ID Checksum Error Counter

This command directs the module to reset the counter for ID checksum errors of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)						Control Code (CC)								
X Sequence Frame Length						Interface Command Code									
0	0 0 0 0 0 0						1	0	1	1	1	0	0	0	
0		0, 0x0			0, 0)x0		2, 0x2 56, 0x38							
	0, 0x0								18	34, 0x	:B8				

Parameters	None
Checksum	SC(0x00) XOR CC(0xB8) XOR PX(0x00) = 0xB8
Message to send	STX(0x02) - SC(0x00) - CC(0xB8) - CHK(0xB8)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset "Slave not responding" Error Counter

This command directs the module to reset the counter for "Slave not responding" errors of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length							Interface Command Code									
0	0 0 0 0 0 0						1	0	1	1	1	0	0	1		
0		0, 0x0			0, (0x0		2, 0x2 57, 0x39								
	0, 0x0								18	35, 0×	B9					

Parameters	None
Checksum	SC(0x00) XOR CC(0xB9) XOR PX(0x00) = 0xB9
Message to send	STX(0x02) - SC(0x00) - CC(0xB9) - CHK(0xB9)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset Inconsistent Synchronization Bytes Counter

This command directs the module to reset the counter for inconsistent synchronization bytes of the LIN interface.

The data to be received starts with the LSB. Example: 0x1 = P1:0x01 and P2:0x00

	Sequence Code (SC)							Control Code (CC)								
X Sequence Frame Length						Interface Command Code										
0	0 0 0 0 0 0						1	0	1	1	1	0	1	0		
0		0, 0x0			0, (0x0		2, 0x2 58, 0x3A								
	0, 0x0								18	36, 0x	BA					

Parameters	None
Checksum	SC(0x00) XOR $CC(0xBA)$ XOR $PX(0x00) = 0xBA$
Message to send	STX(0x02) - SC(0x00) - CC(0xBA) - CHK(0xBA)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Reset All Error Counters

This command directs the module to reset all error counters of the LIN interface. Those counters are:

- RCV errors
- XMT errors
- Bit errors
- Checksum errors
- ID checksum errors
- "Slave not responding" errors
- Inconsistent synchronization bytes

The data to be received starts with the LSB. Example: 0x1 = P1:0x01and P2:0x00

	Sequence Code (SC)							(Contro	ol Co	de (C	C)			
Х	X Sequence Frame Length				Interfa	ace	Cor	nmar	nd Co	de					
0	0	0	0	0	0	0	0	1	0	1	1	1	0	1	1
0	0, 0x0 0, 0x0 2, 0x2 59, 0x3B														
	0, 0x0							18	37, 0x	BB					

Parameters	None
Checksum	SC(0x00) XOR CC(0xBB) XOR PX(0x00) = 0xBB
Message to send	STX(0x02) - SC(0x00) - CC(0xBB) - CHK(0xBB)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

2.5 Module Interface

2.5.1 Initialization Commands

Module Default Values

89

Module Default Values

This command directs the module to set its current configuration to the default values stored in the memory and to initialize all.

Sequence Code (SC)								C	ontro	ol Co	de (C	C)			
X	Sequence			Fi	Frame Length			Interfa	ace	Con	nmar	nd Co	de		
0	0	0	0	0	0	0	0	1	1 1		0	0	0	1	0
0		0, 0x0			0, 0x0)x3			2, (0x2		
			0, 0)x0						19	94, 0x	C2			

Parameters	None
Checksum	SC(0x00) XOR CC(0xC2) XOR PX(0x00) = 0xC2
Message to send	STX(0x02) - SC(0x00) - CC(0xC2) - CHK(0xC2)
Positive response	On successful execution the RS-232 is initialized, too, and the connection is interrupted. Therefore no response is sent. This is not an error.

2.5.2 Read Commands

Read Hardware Version Read Firmware Version 89 91

Read Hardware Version

This command retrieves the hardware version of the module.

	Sequence Code (SC)								C	Contro	ol Co	de (C	C)		
X	Sequence Frame Length				Interfa	ace	Con	nmar	nd Co	de					
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
0		0, 0x0			0, 0x0			3, 0)x3			0, (0x0		
			0, 0)x0						19	92, 0×	C0			

Parameters	None
Checksum	SC(0x00) XOR CC(0xC0) XOR PX(0x00) = 0xC0
Message to send	STX(0x02) - SC(0x00) - CC(0xC0) - CHK(0xC0)
Positive response	STX(0x02) - SC(0x0F) - P1(0x30) - P2(0x32) - P3(0x2E) - P4(0x30) - P5(0x32) - P6(0x2E) - P7(0x30) - P8(0x31) - P9(0x20) - P10(0x48) - P11(0x53) - P12(0x2D) - P13(0x43) - P14(0x41) - P15(0x4E) - CHK(0x37)

A positive response has 15 parameters. The returned data bytes are ASCII characters. The interpretation is:

Information	Parameters
Hardware – major version	P1, P2
Hardware – minor version	P4, P5
Hardware – release version	P7, P8
CAN transceiver	P10 P15
Data separators	P3, P6, P9

Hardware - major version

The major version is received as ASCII value, normally numeric characters. For example, character "0" (P1= 0x30) and character "1" (P2= 0x31) indicate the major version 01. Special kinds of hardware versions can have a non-numeric character to identify a special property. For example, S1 could stand for a special major version 01.

Hardware - minor version

The minor version is received as ASCII value (numeric characters). For example, character "0" (P4= 0x30) and character "2" (P5= 0x32) indicate the minor Version 02.

Hardware - release version

The release version is received as ASCII value (numeric characters). For example, character "5" (P7= 0x35) and character "1" (P8= 0x31) indicate the release version 51.

Module Interface

CAN transceiver

The CAN transceiver is returned as text (ASCII characters). This text is composed by two upper cased characters which indicate the kind of transceiver:

Parameters	Characters	CAN-Transceiver					
P10 = 0x48, P11 = 0x53	HS	High-speed according to ISO 11898-2					
P10 = 0x4C, P11 = 0x53	LS	Low-speed according to ISO 11898-3					

The string "-CAN" (P12 = 0x2D, P13 = 0x43, P14 = 0x41, P15 = 0x4E) is used as suffix. For example, if a High-speed CAN transceiver is implemented in the module, the returned text is "HS-CAN".

Data separators

Three separators are used in a response to this command. A period character (P3, P6 = 0x2E = ".") is used two times to separate the major, the minor, and the release version of the hardware. A blank character (P9 = 0x20 = "") is used to separate the hardware version from the type of CAN transceiver.

The interpretation of the positive response example above results in the following string concatenation:

- Hardware version = "02.02.01" P1(0x30) P2(0x32) P3(0x2E) P4(0x30) P5(0x32) P6(0x2E) P7(0x30) P8(0x31)
- Blank separator = " " P9(0x20)
- CAN transceiver = "HS-CAN" P10(0x48) P11(0x53) P12(0x2D) P13(0x43) P14(0x41) P15(0x4E)

Read Firmware Version

This command retrieves the firmware version of the module.

Module Interface

	Sequence Code (SC)							(ontro	ol Co	de (C	C)			
Х	Se	quen	nce Frame Length			Interfa	ace	Cor	nmar	nd Co	de				
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
0		0, 0x0			0, 0x0			3, 0)x3			1, ()x1		
			0, 0)x0						19	93, 0x	C1			

Parameters	None
Checksum	SC(0x00) XOR CC(0xC1) XOR PX(0x00) = 0xC1
Message to send	STX(0x02) - SC(0x00) - CC(0xC1) - CHK(0xC1)
Positive response	STX(0x02) - SC(0x08) - P1(0x30) - P2(0x31) - P3(0x2E) - P4(0x30) - P5(0x31) - P6(0x2E) - P7(0x30) - P8(0x31) - CHK(0x0D)

A positive response has 8 parameters. The returned data bytes are ASCII characters. The interpretation is:

Information	Parameters
Firmware – major version	P1, P2
Firmware – minor version	P4, P5
Firmware – release version	P7, P8
Data separators	P3, P6

Firmware - major version

The major version is received as ASCII value (numeric characters). For example, character "0" (P1= 0x30) and character "1" (P2= 0x31) indicate the major version 01.

Firmware - minor version

The minor version is received as ASCII value (numeric characters). For example, character "0" (P4= 0x30) and character "2" (P5= 0x32) indicate the minor Version 02.

Firmware - release version

The release version is received as ASCII value (numeric characters). For example, character "5" (P7= 0x35) and character "1" (P8= 0x31) indicate the release version 51.

Module Interface

Data separators

Two separators are used in a response to this command. A period character (P3, P6 = 0x2E = ".") is used two times to separate the major, the minor, and the release version of the firmware.

The interpretation of the positive response example above results in the following string concatenation:

Firmware version = "01.01.01" P1(0x30) P2(0x31) P3(0x2E) P4(0x30) P5(0x31) P6(0x2E) P7(0x30) P8(0x31)

Configuration Commands 2.5.3

Flash Current Configuration

93

Flash Current Configuration

This command directs the module to take the current configuration on the module and save it into the module's flash memory. Afterwards, each time the module is reset or restarted the configuration is reloaded from the flash memory.

	Sequence Code (SC)					Control Code (CC)									
X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0 0 0 0				1	0 0 0 0 1					1
0	0 0, 0x0 0, 0x0						3, 0)x3			3, (0x3			
	0, 0x0							19	95, 0×	C3					

Parameters	None
Checksum	SC(0x00) XOR CC(0xC3) XOR PX(0x00) = 0xC3
Message to send	STX(0x02) - SC(0x00) - CC(0xC3) - CHK(0xC3)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Module Interface

2.5.4 Reset/Erase Commands

Reset Module 94

Reset Module

This command directs the module to initialize with values loaded from the flash memory.

		Sequ	ence	Code	(SC)			Control Code (CC)							
X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0	0	0	1	1	0 0 0 1 0					0
0	0 0, 0x0 0, 0x0						3, 0)x3			4, (0x4			
	0, 0x0							19	96, 0x	C4					

Parameters	None
Checksum	SC(0x00) XOR CC(0xC4) XOR PX(0x00) = 0xC4
Message to send	STX(0x02) - SC(0x00) - CC(0xC4) - CHK(0xC4)
Positive response	Information text in ASCII format

A positive response for this command is a descriptive text. This response doesn't follow the same rules as the responses of other commands, i.e. it does not use the STX, SC or CC bytes. The returned text is a conjunction of the name of the module, hardware and firmware versions, and the manufacturer. An example of this text:

The end of the response is marked with a carriage return + line feed. The information and length of this response can vary.

A reset of the module causes the same LED test procedure as after powering on the module (see user manual). If the used baud rate at the moment of the reset is different as the baud rate saved in the flash memory, the RS-232 connection with the module will be lost.

2.6 Message Forwarding

The module is able to transmit and receive CAN as well as LIN messages via the RS-232 interface.

2.6.1 CAN

Write Data	95
Receive Data	97

Write Data

This command uses a message structure like in other commands mentioned earlier in this documentation. The module forwards the embedded message to the CAN interface. The data part of the message structure can vary according to the configuration of the CAN message to be transmitted.

Control Code (CC)											
Interface Command Code											
0	1	0	0	0	0	0	1				
1, 0x1 1, 0x1											
65, 0x41											

The first data byte (CAN info byte) gives information about the length of the CAN ID, the CAN data length, and the RTR status (remote request). This byte sets the length of the rest of the data to be transmitted. Therefore the frame length of the sequence code (SC) must be this byte plus the needed length for the CAN message. The byte has the following layout:

Bit	7	6	5	4	3	2	1	0
Description	Frame type	RTR status	Fixed	Fixed	CAN data length			
Contents	0: STD	0: No RTR	0	0	0x00	. 0x08	3	
	1: EXT	1: RTR						

According to the frame type the data bytes used to specify the CAN ID vary:

PCAN-LIN - Protocol DefinitionsMessage Forwarding

- Standard frame (STD): The standard frame format has a range of 0 to 0x7FF (11 bits). Therefore 2 bytes are needed for the CAN ID.
- Extended frame (EXT): The extended frame format has a range of 0 to 0x1FFFFFFF (29 bits). Therefore 4 bytes are needed for the CAN ID.

If a CAN message to be transmitted is a remote request frame (RTR), the CAN data length must be 0. Otherwise the command returns an error and the message is not forwarded to the CAN interface.

	Sequence Code (SC)											
v	Seguence	Erar			CAN Message Length							
^	Sequence	Hai	me Length	•	т	ID Length Data Leng						
0	0 0 0	0 (0 0	1		STD = 2	If RTR, Length 0					
0	0, 0x0		1, 0x1			EXT = 4	Data Count					
	1, 0x1 + CAN Message Length											

The order for the parameter is: CAN info byte, CAN ID bytes, CAN data bytes. For example, to send a message with default ID and 3 data bytes the sequence code must be 0x06:

	Sequence Code (SC)						Control Code (CC)								
X Sequence Frame Length					Interface Command Code										
0	0	0	0	0	0 1 1 0				1	0	0	0	0	0	1
0	0 0,0x0 6,0x6						1, 0)x1			1, (0x1			
	6, 0x6						6	5, 0x	41						

Parameters	Needed parameters are 1 byte for the CAN message configuration and the needed bytes for the CAN message itself. In this example a standard CAN message (ID: 0x10) with 3 data bytes (0x01, 0x02, 0x03) is transmitted.
Checksum	PX = P1(0x03) XOR P2(0x10) XOR P3(0x00) XOR P4(0x01) XOR P5(0x02) XOR P6(0x02) = 0x13 SC(0x06) XOR CC(0x41) XOR PX(0x13) = 0x54
Message to send	STX(0x02) - SC(0x06) - CC(0xC4) - P1(0x03) - P2(0x10) - P3(0x00) - P4(0x01) - P5(0x02) - P6(0x03) - CHK(0x54)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error* Messages on page 104.

Receive Data

When a CAN message is forwarded to the RS-232 interface (see command Retrieve Forward Mask on page 23), it is embedded into the command structure as data part.

Byte	Description	Bit position										
		7	6	5	4	3	2	1	0			
1	STX	0	0	0	0	0	0	1	0			
2	Sequence code (SC)	AR	0	0	1	FL						
3	CAN control field (CC)	FF	RTR	ERR	0	CDL	CDL					
4 5 4 7	CAN ID STD: 2 bytes CAN ID EXT: 4 bytes	2 or 4 b	ytes lon	g CAN II), fron	n LSB	to M	SB				
6 n 8 n	CAN data bytes	Number of parameters depends on the CAN control field.										
n+1	Checksum	Bitwise exclusive-OR operation between all bytes of this messages except the STX byte (first byte, start byte).							,			

Auto Reply (AR) bit is 1 because a CAN message is forwarded.

The Sequence Number (three bits) is fixed to 0x01, meaning that the following data is a forwarded message from the CAN interface.

Message Forwarding

The CAN control byte contains information about the received message. The frame format (FF) specifies the length of the CAN ID as well as the byte to be read and interpreted:

- Standard frame (0 ... 0x7FF, 11 bits): 2 bytes
- Extended frame (0 ... 0x1FFFFFFF, 29 bits): 4 bytes

If a received CAN message is a remote request frame (RTR), the CAN data length (CDL) is 0.

If the error bit (ERR) is set, a CAN error is received. Those messages are only received, when the forward mask of the CAN interface is set to monitor and forward CAN errors (for more information see command Set Forward Mask on page 32). For more information about error codes see chapter 3 Error Messages on page 104.

The frame length (FL) is the count of bytes to be received (conformed by the CAN control field, the CAN ID, and CAN data bytes).

The CAN data length (CDL) specifies the data bytes to be read after the CAN ID.

For example, receiving a forwarded message with the standard ID 0x10 and 3 data bytes (0x01, 0x02, 0x03) has a form as follows:

Message received: STX(0x02) - SC(0x96) - CC(0x03) - P1(0x10) -P2(0x00) - P3(0x01) - P4(0x02) - P5(0x03) - CHK(0x85)

Sequence code (SC = 0x96)											
Bit 7 6 5 4 3 2 1 0											
Description	Auto reply	Sequence number Frame length									
Contents	1	0 0 1 0 1 1 0									

Message Forwarding

CAN control code (CC = 0x03)								
Bit	7	6	5	4	3 2 1 0			
Description	Frame format	RTR	Error	Fixed	CAN data length			gth
Contents	0 (STD)	0	0 (None)	0	0	0	1	1

Frame format is standard: CAN ID is two bytes long (P1 and P2):

CAN ID = 0x10

CAN data length (CDL) is 3:

— P3: CAN data [0] = 0x01

□ P5: CAN data [2] = 0x03

CAN message summary:

Type: STD ID (0x10)

Length: 3 data bytes (0x01, 0x02, 0x03)

Message Forwarding

2.6.2 LIN

Write Data Receive Data 100 101

Write Data

This command uses a message structure like in other commands mentioned earlier in this documentation. The module forwards the embedded message to the LIN interface. The data part of a the message structure can vary according to the configuration of the LIN message to be transmitted.

Control Code (CC)								
Interface Command Code								
1	0	0 0 0 0 0 1						
2, 0	x2	1, 0x1						
129, 0x81								

The First data byte contains the type and ID of the LIN message to be transmitted. The data of the LIN message (1 to 8 bytes) is succeeding. If the ID uses the default length (LIN 1.x specification), the data length depends on the given LIN ID (see command *Retrieve Frame Length* on page 54), otherwise the number of data bytes as configured for the ID must be included. The first byte has the following layout:

Bit	7	6	5	4	3	2	1	0
Description	Frame type	Fixed	LIN ID					
Contents	0: REQ	0	0x00 0x3F					
	1: RESP							

- Request frame (REQ): Message is used to do a data requisition.
- Response frame (RESP): Message comes from a LIN slave.

If the number of transmitted data bytes does not align with the configured length for the used LIN ID, an error is returned and the message is not forwarded to the LIN interface.

Message Forwarding

	Sequence Code (SC)								
Х	Sequence	Frame Length	+	LIN ID Frame Length					
0	0 0 0	0 0 0 1		If RESP, length = 0,					
0	0, 0x0	1, 0x1		otherwise see Frame Length					
				command					
	1, 0x1 + LIN ID frame length								

For example, to transmit a message with a standard ID (LIN 1.x) and 4 data bytes (an ID in the range of 0x20 to 0x2F), the sequence code must be 0x05:

	Sequence Code (SC)					Control Code (CC)									
Х	X Sequence Frame Length			Interfa	ace	Command Code									
0	0	0	0	0	1	0	1	1 0 0 0 0 0 0				0	1		
0		0, 0x0			5, 0x5			2, 0	, 0x2 1, 0x1						
	5, 0x5						1:	29, 0>	(81						

Parameters	Needed parameters are 1 byte for the LIN message configuration and the needed bytes for the LIN message itself. In this example a standard LIN request with 4 bytes (ID: 0x20; data bytes: 0x01, 0x02, 0x03, 0x04) is transmitted.
Checksum	PX = P1(0x20) XOR P2(0x01) XOR P3(0x02) XOR P4(0x03) XOR P5(0x04) = 0x24 SC(0x05) XOR CC(0x81) XOR PX(0x24) = 0xA0
Message to send	STX(0x02) - SC(0x05) - CC(0x81) - P1(0x20) - P2(0x01) - P3(0x02) - P4(0x03) - P5(0x04) - CHK(0xA0)
Positive response	STX(0x02) - SC(0x01) - P1(0x00) - CHK(0x01)

A positive response has 1 parameter with the value 0 meaning no errors. For more information about error codes see chapter 3 *Error Messages* on page 104.

Receive Data

When a LIN message is forwarded to the RS-232 interface (see command *Retrieve Forward Mask* on page 41), it is embedded into the command structure as data part.

Message Forwarding

Byte	Description	Bit position							
		7	6	5	4	3	2	1	0
1	STX	0	0	0	0	0	0	1	0
2	Sequence code (SC)	AR	0	1 0 FL					
3	LIN control field (CC)	FT	ERR	LIN ID (0x00 0x3F)					
				Error code					
4 n	LIN data bytes	Para (FL-		count	depen	ds on	the s	sequer	ice code
n+1	Checksum	Bitwise exclusive-OR operation between all bytes of this messages except the STX byte (first byte, start byte).							

- Auto reply (AR) bit is 1, because a LIN message is forwarded.
- The sequence number (three bits succeeding the AR bit) is fixed to 0x02. It means that the following data is a forwarded message from the LIN interface.
- If the frame type bit (FT) is 1, the message comes from a slave (RESP = response). Otherwise, it is a request for data (REQ = request).
- If the error bit (ERR) is 1, a LIN error is received. Messages with this bit set are only received, if the forward mask of the LIN interface is set to monitor and forward LIN errors (see command Set Forward Mask on page 62 for more information). In this case the LIN control field (CC) represents the error code. This byte is succeeded by the checksum. No data is transmitted, when an error occurs.
- The data length to be read depends on the frame length field of the LIN sequence code (SC). Because the LIN control field (CC) already contains the LIN ID, the rest of the parameters are data bytes. In this case the number of data bytes is the total of parameters minus one byte (the control code).

For example, receiving a forwarded message with the standard ID 0x20 (format LIN 1.x, see *Retrieve Frame Length* on page 54 for more information) and the data bytes (0x01, 0x02, 0x03, 0x04) has the following form:

Message Forwarding

Message received: STX(0x02) - SC(0xA5) - CC(0xA0) - P1(0x01) - P2(0x02) - P3(0x03) - P4(0x04) - CHK(0x01)

Sequence code (SC = 0xA4)									
Bit	7	6 5 4 3 2 1 0						0	
Description	Auto reply	Sequence number			Frame length				
Contents	1	0 1 0 0 1 0					1		

LIN control code (CC = 0xA0)								
Bit	7	6	5 4 3 2 1 0					0
Description	Frame type	Error	LIN ID					
Contents	1 (RESP)	0	1	0	0	0	0	0

- LIN data length = frame length 1 byte (control code): 0b0101 = 5 1 = 4
- \bot LIN ID = 0b100000 = 0x20
- □ P1: LIN data [0] = 0x01
- □ P3: LIN data [2] = 0x03
- ⊢ P4: LIN data [3] = 0x04

LIN message summary:

- ─ Type: STD ID (0x20)
- Length: 4 data bytes (0x01, 0x02, 0x03, 0x04)

3 Error Messages

3.1 RS-232 Return Codes

As response to each request message a code is returned, i.e. a valid RS-232/LIN message with one data byte. The structure of a response has a length of 4 bytes and is defined as follows:

Byte	Description
1	STX (0x02)
2	Sequence code (0x01)
3	Data (error code)
4	Checksum (0x01 XOR error code)

The possible codes are listed in the following table:

Error code	Label	Description
0x00	ОК	No errors
0x01	INV_CHECKSUM	Invalid checksum
0x02	SER_BUFF_OVERRUN	Buffer overrun at the RS-232 communication
0x03	INV_MASK	Invalid forward mask was passed
0x04	NOT_POSSIBLE	Command is not allowed for the given interface
0x05	OUT_OF_RANGE	Parameter out of range of valid values
0x06	NO_SCHEDULE_ENTRIES	LIN scheduler has no entries
0x07	INV_ARGUMENT	Invalid argument was passed
0x08	INV_GROUP	Invalid interface was passed
0x09	NOT_SUPPORTED	Unsupported command
0x0A	FAILED	The execution of a valid command produced an error condition
0x0B	ACTIVE_MASTER	Cyclic processing of LIN frames (LIN master operation) is currently active. At this time it is not allowed to transmit single frames.
0x0C	INV_TIMESTAMP	Invalid time stamp was passed

3.2 CAN Error Codes

If an error occurs within the CAN interface and the CAN forward mask is configured to send CAN errors to the RS-232 interface (see command *Retrieve Forward Mask* on page 23 for more information), the error is returned as a RS-232/CAN message structure with a data length of 4 bytes and a total of 8 bytes:

Byte	Description
1	STX (0x02)
2	Sequence code (0x94)
3	CAN control field (0x24)
4	Bit mask with general error information
5	Error capture code from the CAN controller (SJA1000)
6	RX error counter of the CAN controller (SJA1000)
7	TX error counter of the CAN controller (SJA1000)
8	Checksum (0x01 XOR error code)

The bit mask with general information about the CAN error can be one of the following values:

Error code	Value	Description		
0x01	CAN_ERR_BUS_OFF	The CAN controller is in bus-off state		
0x02	CAN_ERR_BUS_PASSIVE	The CAN controller is in bus-passive state		
0x04	CAN_ERR_BUS_ACTIVE	The CAN controller is back to active state (the state before was either busoff or bus-passive)		
0x08	CAN_ERR_DATA_OVERRUN	Receive queue was read too late (losing messages)		
0x10	CAN_ERR_WARNLIMIT	One of the internal error counters of the CAN controller has reached a predefined limit		
0x20	CAN_ERR_EWL_EXCEEDED	The predefined error warning limit has been exceeded		

3.3 LIN Error Codes

If an error occurs within the LIN interface and the LIN forward mask is configured to send LIN errors to the RS-232 interface (see command *Retrieve Forward Mask* on page 41 for more information), the error is returned as a RS-232/LIN message structure with a data length of 1 byte and a total of 4 bytes:

Byte	Description	
1	STX (0x02)	
2	Sequence code (0xA1)	
3	Data (error code)	
4	Checksum (0xA1 XOR error code)	

Bit 6 in Byte 3 is on (1) indicating that the place in the byte usually used for the LIN ID is now occupied by the LIN error code.

LIN control code (CC = 0xA1)								
Bit	7	6	5	4	3	2	1	0
Description	Frame type	Error	Error code					
Contents	0	1	Х	Х	Х	Х	Х	Χ

Error code	Description	
0x01	Buffer overflow (lost information during message transmission)	
0x02	Invalid stop bit found (possibly due to bit rate deviation)	
0x03	Invalid break found in the protocol stack	
0x04	Invalid synchronization byte found (possibly due to bit rate deviation)	
0x05	Error in LIN ID parity bit 0	
0x06	Error in LIN ID parity bit 1	
0x07	Invalid data received (bit error)	
0x08	Invalid frame checksum received	
0x09	Frame timeout (slave not responding or interframe gaps are too long)	
0x0A	Definitive slave not responding error	