Service Guide

Publication Number 33250-90011 (order as 33250-90100 manual set) Edition 2, March 2003
© Copyright Agilent Technologies, Inc. 2000, 2003
For Safety information, Warranties, and Regulatory information, see the pages following the Index.

Agilent 33250A

80 MHz Function/
Arbitrary Waveform Generator

Agilent 33250A at a Glance

The Agilent Technologies 33250A is a high-performance 80 MHz synthesized function generator with built-in arbitrary waveform and pulse capabilities. Its combination of bench-top and system features makes this function generator a versatile solution for your testing requirements now and in the future.

Convenient bench-top features

- 10 standard waveforms
- Built-in 12 -bit $200 \mathrm{MSa} / \mathrm{s}$ arbitrary waveform capability
- Precise pulse waveform capabilities with adjustable edge time
- LCD color display provides numeric and graphical views
- Easy-to-use knob and numeric keypad
- Instrument state storage with user-defined names
- Portable, ruggedized case with non-skid feet

Flexible system features

- Four downloadable 64K-point arbitrary waveform memories
- GPIB (IEEE-488) interface and RS-232 interface are standard
- SCPI (Standard Commands for Programmable Instruments) compatibility

Note: Unless otherwise indicated, this manual applies to all Serial Numbers.

The Front Panel at a Glance

3

1 Graph Mode/Local Key
2 Menu Operation Softkeys
3 Waveform Selection Keys
4 Knob
5 Modulation/Sweep/Burst Menus
6 State Storage Menu

1 Graph Mode/Local Key
2 Menu Operation Softkeys
3 Waveform Selection Keys
4 Knob
5 Modulation/Sweep/Burst Menus
6 State Storage Menu

7 Utility Menu
8 Instrument Help Topic Menu
9 Output Enable/Disable Key
10 Manual Trigger Key (used for Sweep and Burst only)
11 Cursor Keys

Note: To get context-sensitive help on any front-panel key or menu softkey, press and hold down that key.

The Front-Panel Display at a Glance

Graph Mode

To enter the Graph Mode, press the Graph key.

Front-Panel Number Entry

You can enter numbers from the front-panel using one of two methods.

Use the knob and arrow keys to modify the displayed number.

Use the numeric keypad and menu softkeys to select the units.

The Rear Panel at a Glance

1 External 10 MHz Reference Input Terminal
2 Internal 10 MHz Reference Output Terminal
3 RS-232 Interface Connector
4 External Modulation Input Terminal

5 Input: External Trig/FSK/Burst Gate Output: Trigger Output
6 GPIB Interface Connector
7 Chassis Ground

Use the Uuility menu to:

- Select the GPIB or RS-232 interface (see chapter 2 in User's Guide).
- Select the GPIB address (see chapter 2 in User's Guide).
- Set the RS-232 baud rate, parity, and handshake (see chapter 2 in User's Guide).

WARNING
For protection from electrical shock, the power cord ground must not be defeated. If only a two-contact electrical outlet is available, connect the instrument's chassis ground screw (see above) to a good earth ground.

In This Book

Specifications Chapter 1 lists the function generator's specifications.
Quick Start Chapter 2 prepares the function generator for use and helps you get familiar with a few of its front-panel features.

Front-Panel Menu Operation Chapter 3 introduces you to the frontpanel menu and describes some of the function generator's menu features.

Calibration Procedures Chapter 4 provides calibration, verification, and adjustment procedures for the function generator.

Theory of Operation Chapter 5 describes the block diagram and circuit-level theory related to the operation of the function generator.

Service Chapter 6 provides guidelines for returning your function generator to Agilent Technologies for servicing, or for servicing it yourself.

Replaceable Parts Chapter 7 contains a detailed parts list of the function generator.

Backdating Chapter 8 describes the differences between this manual and older issues of this manual.

Schematics Chapter 9 contains the function generator's schematics and component locator drawings.

If you have questions relating to the operation of the Agilent 33250A, call 1-800-452-4844 in the United States, or contact your nearest Agilent Technologies Office.

If your 33250A fails within three years of purchase, Agilent will either repair or replace it free of charge. Call 1-877-447-7278 in the United States (and ask for "Agilent Express") or contact your local Agilent Technologies Office.

Contents

Chapter 1 Specifications 13
Chapter 2 Quick Start
To Prepare the Function Generator for Use 21
To Adjust the Carrying Handle 22
To Set the Output Frequency 23
To Set the Output Amplitude 2 24
To Set a DC Offset Voltage 26
To Set the Duty Cycle 27
To Configure a Pulse Waveform 28
To View a Waveform Graph 29
To Output a Stored Arbitrary Waveform 30
To Use the Built-In Help System 31
To Rack Mount the Function Generator 33
Chapter 3 Front-Panel Menu Operation
Front-Panel Menu Reference 37
To Reset the Function Generator 39
To Select the Output Termination 39
To Read the Calibration Information 40
To Unsecure and Secure for Calibration 41
To Store the Instrument State 44
To Configure the Remote Interface 45
Chapter 4 Calibration Procedures
Agilent Technologies Calibration Services 49
Calibration Interval 50
Adjustment is Recommended 50
Time Required for Calibration 51
Automating Calibration Procedures 52
Recommended Test Equipment 53
Test Considerations 54
Performance Verification Tests 55
Internal Timebase Verification 60
AC Amplitude (high-impedance) Verification 61
Low Frequency Flatness Verification 62
0 dB Range Flatness Verification 63
+10 dB Range Flatness Verification 65
+20 dB Range Flatness Verification 66

Contents

Chapter 4 Calibration Procedures (continued)
Calibration Security 68
Calibration Message 70
Calibration Count 70
General Calibration/Adjustment Procedure 71
Aborting a Calibration in Progress 72
Sequence of Adjustments 72
Self-Test 73
Frequency (Internal Timebase) Adjustment 74
Internal ADC Adjustment 75
Output Impedance Adjustment 76
AC Amplitude (high-impedance) Adjustment 78
Low Frequency Flatness Adjustment 80
0 dB Range Flatness Adjustments 81
+10 dB Range Flatness Adjustments 83
+20 dB Range Flatness Adjustment 85
Pulse Width (Trailing Edge Delay) Adjustment 87
Pulse Edge Time Adjustment 88
Duty Cycle Adjustment 89
Output Amplifier Adjustment (Optional) 90
Calibration Errors 91
Chapter 5 Theory of Operation
Block Diagram 95
Main Power Supply 97
On-Board Power Supplies 98
Waveform DAC and Filters 100
Digital Waveform, Pulse, and Sync 101
Digital Waveform Translator 104
Amplitude Multiplier 106
Main Output Circuitry 107
System ADC 110
System DAC 112

Contents

Chapter 5 Theory of Operation (continued)
Synthesis IC 113
Timebase 115
Phase Locked Loops 116
Clock Divider 118
Trigger and Delay 120
Waveform RAM 122
Synchronous Multiplexer 123
Main Processor 124
Main Gate Array 125
DSP and Gateway 126
Earth-Referenced Logic 126
Front Panel 127
Chapter 6 Service
Operating Checklist 130
Types of Service Available 131
Repackaging for Shipment 132
Cleaning 132
Electrostatic Discharge (ESD) Precautions 133
Surface Mount Repair 133
Troubleshooting Hints 134
Self-Test Procedures 136
Disassembly 140
Chapter 7 Replaceable Parts
33250-66511 Main PC Assembly (A1) 153
33205-66502 Front-Panel PC Assembly (A2) 176
33250A Chassis Assembly 177
33250A Front-Panel Assembly 178
Manufacturer's List 179
Chapter 8 Backdating 181

Contents

Chapter 9 Schematics

A1 Earth Referenced Communications Schematic 185
A1 Main Processor Schematic 186
A1 Main Gate Array Schematic 187
A1 Display Controller Schematic 188
A1 DSP Schematic 189
A1 Modulation Schematic 190
A1 System DAC Schematic 191
A1 Timebase Schematic 192
A1 Phase-Locked Loops Schematic 193
A1 Trigger Schematic 194
A1 Clock Divider and Control Schematic 195
A1 Synthesis IC Schematic 196
A1 Waveform Memory Schematic 197
A1 Synchronous Multiplexer Schematic 198
A1 Digital Waveform and Sync Schematic 199
A1 Variable-Edge Level Translation Schematic 200
A1 Waveform DAC, Filters, and Comparator Schematic 201
A1 Multiplier Schematic 202
A1 Main Output Circuitry Schematic 203
A1 Power Supply Schematic 204
A2 Keyboard Schematic 205
A2 Display Schematic 206
A1 Component Locator (top) 207
A1 Component Locator (bottom) 208
A2 Component Locator (top) 209
A2 Component Locator (bottom) 210

Specifications

WAVEFORMS

Standard Waveforms:

Arbitrary Waveforms
Waveform Length:
Amplitude Resolution:
Repetition Rate:
Sample Rate:
Filter Bandwidth:
Non-Volatile Memory:

Sine, Square, Ramp, Pulse, Noise, $\operatorname{Sin}(x) / \mathrm{x}$, Exponential Rise, Exponential Fall, Negative Ramp, Cardiac, DC Volts

1 to 64 K points 12 bits (including sign) $1 \mu \mathrm{~Hz}$ to 25 MHz 200 MSa /s 50 MHz Four 64 K waveforms ${ }^{1}$

FREQUENCY CHARACTERISTICS

Sine:	$1 \mu \mathrm{~Hz}$ to 80 MHz
Square:	$1 \mu \mathrm{~Hz}$ to 80 MHz
Ramp:	$1 \mu \mathrm{~Hz}$ to 1 MHz
Pulse:	$500 \mu \mathrm{~Hz}$ to 50 MHz
Noise (Gaussian):	50 MHz bandwidth
Arb:	$1 \mu \mathrm{~Hz}$ to 25 MHz
Resolution:	$1 \mu \mathrm{~Hz}$; except pulse, 5 digits
Accuracy (1 year):	$2 \mathrm{ppm}, 18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ $3 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

SINEWAVE SPECTRAL PURITY

Harmonic Distortion

	$<3 \mathrm{Vpp}^{2}$	$>3 \mathrm{Vpp}$
DC to $1 \mathrm{MHz}:$	-60 dBc	-55 dBc
1 MHz to $5 \mathrm{MHz}:$	-57 dBc	-45 dBc
5 MHz to $80 \mathrm{MHz}:$	-37 dBc	-30 dBc

Total Harmonic Distortion
DC to $20 \mathrm{kHz}: \quad<0.2 \%+0.1 \mathrm{mVrms}$
Spurious (non-harmonic) ${ }^{3}$
DC to $1 \mathrm{MHz}: \quad-60 \mathrm{dBc}$
1 MHz to $20 \mathrm{MHz}: \quad-50 \mathrm{dBc}$
20 MHz to $80 \mathrm{MHz}: \quad-50 \mathrm{dBc}+6 \mathrm{dBc} /$ octave
Phase Noise (30 kHz band)
$10 \mathrm{MHz} \quad<-65 \mathrm{dBc}$ (typical)
$80 \mathrm{MHz} \quad<-47 \mathrm{dBc}$ (typical)

SIGNAL CHARACTERISTICS

Square Wave

Rise/Fall Time:	$<8 \mathrm{~ns}^{4}$
Overshoot:	< 5%
Asymmetry:	1% of period + 1 ns
Jitter (rms)	
< 2 MHz :	0.01\% + 525 ps
$\geq 2 \mathrm{MHz}$	$0.1 \%+75 \mathrm{ps}$
Duty Cycle	
$\leq 25 \mathrm{MHz}$:	20.0\% to 80.0\%
25 MHz to 50 MHz :	40.0\% to 60.0\%
50 MHz to 80 MHz :	50.0\% (fixed)
Pulse	
Period:	20.00 ns to 2000.0 s
Pulse Width:	8.0 ns to 1999.9 s
Variable Edge Time:	5.00 ns to 1.00 ms
Overshoot:	< 5%
Jitter (rms):	$100 \mathrm{ppm}+50 \mathrm{ps}$

Ramp

Linearity: $\quad<0.1 \%$ of peak output
Symmetry: $\quad 0.0 \%$ to 100.0%
Arb
Minimum Edge Time: < 10 ns
Linearity: $<0.1 \%$ of peak output
Settling Time: $\quad<50 \mathrm{~ns}$ to 0.5% of final value
Jitter (rms): $\quad 30 \mathrm{ppm}+2.5 \mathrm{~ns}$

[^0]
OUTPUT CHARACTERISTICS ${ }^{1}$

Amplitude (into 50Ω): $\quad 10 \mathrm{mVpp}$ to $10 \mathrm{Vpp}^{2}$
Accuracy (at $1 \mathrm{kHz},>10 \mathrm{mVpp}$, Autorange On):
$\pm 1 \%$ of setting $\pm 1 \mathrm{mVpp}$
Flatness (sinewave relative to 1 kHz , Autorange On)

$$
<10 \mathrm{MHz}: \quad \pm 1 \%(0.1 \mathrm{~dB})^{3}
$$

10 MHz to $50 \mathrm{MHz}: \quad \pm 2 \%(0.2 \mathrm{~dB})$
50 MHz to $80 \mathrm{MHz} \quad \pm 5 \%$ (0.4 dB)
Units:
Resolution:
Offset (into 50Ω):
Accuracy:
Vpp, Vrms, dBm, High Level, Low Level
0.1 mV or 4 digits
$\pm 5 \mathrm{Vpk} \mathrm{ac}+\mathrm{dc}$
1% of setting +2 mV
$+0.5 \%$ of amplitude
Waveform Output
Impedance:
Isolation:
Protection:
50Ω typical (fixed) $>10 \mathrm{M} \Omega$ (output disabled) 42 Vpk max. to Earth Short-circuit protected; ${ }^{4}$ Overload relay automatically disables main output

MODULATION CHARACTERISTICS

AM Modulation
Carrier Waveforms: Sine, Square, Ramp, Arb
Modulating Waveforms: Sine, Square, Ramp, Noise, Arb
Modulating Frequency:
Depth:
Source:
2 mHz to 20 kHz 0.0% to 120.0% Internal / External

FM Modulation

Carrier Waveforms: Sine, Square, Ramp, Arb
Modulating Waveforms: Sine, Square, Ramp, Noise, Arb
Modulating Frequency: Peak Deviation: Source: 2 mHz to 20 kHz DC to 80 MHz Internal / External

FSK

Carrier Waveforms:
Modulating Waveforms: Internal Rate: Frequency Range: Source:

Sine, Square, Ramp, Arb 50% duty cycle square 2 mHz to 100 kHz $1 \mu \mathrm{~Hz}$ to 80 MHz Internal / External

External Modulation Input

Voltage Range:	$\pm 5 \mathrm{~V}$ full scale
Input Impedance:	$10 \mathrm{k} \Omega$
Frequency:	DC to 20 kHz

BURST

Waveforms:
Frequency:
Burst Count:
Start / Stop Phase:
Internal Period:
Gate Source:
Trigger Source:
Trigger Delay
N-Cycle, Infinite:

SWEEP

Waveforms:
Type:
Direction:
Start F / Stop F:
Sweep Time:
Trigger:
Marker:

Sine, Square, Ramp, Pulse, Noise, Arb $1 \mu \mathrm{~Hz}$ to $80 \mathrm{MHz}^{5}$ 1 to 1,000,000 cycles, or Infinite
-360.0° to $+360.0^{\circ}$ 1 ms to 500 s External Trigger Single, External, or Internal Rate
0.0 ns to 85.000 s

Sine, Square, Ramp, Arb
Linear or Logarithmic Up or Down $100 \mu \mathrm{~Hz}$ to 80 MHz 1 ms to 500 s Single, External, or Internal Falling edge of Sync signal (programmable)

[^1]
SYSTEM CHARACTERISTICS

Configuration TImes (typical) ${ }^{1}$	
Function Change	
Standard: ${ }^{2}$	102 ms
Pulse:	660 ms
Built-In Arb: ${ }^{2}$	240 ms
Frequency Change:	24 ms
Amplitude Change:	50 ms
Offset Change:	50 ms
Select User Arb:	< 400 ms for < 16K points
Modulation Change:	$<200 \mathrm{~ms}$

Arb Download Times GPIB / RS-232 $(115 \mathrm{Kbps})^{3}$

Arb Length	Binary	ASCII Integer	ASCII Real
64 K points	23 sec	92 sec	154 sec
16 K points	6 sec	23 sec	39 sec
8 K points	3 sec	12 sec	20 sec
4 K points	1.5 sec	6 sec	10 sec
2 K points	0.75 sec	3 sec	5 sec

TRIGGER CHARACTERISTICS

Trigger Input

Input Level:
Slope:
Pulse Width:
Input Impedance:
Latency
Sweep:
Burst:
Jitter (rms)
Sweep:
Burst:

Trigger Output
Level:
Pulse Width:
Maximum Rate:
Fanout:

TTL-compatible
Rising or falling (selectable)
$>100 \mathrm{~ns}$ $10 \mathrm{k} \Omega$, DC coupled
$<10 \mu \mathrm{~s}$ (typical)
< 100 ns (typical)
$2.5 \mu \mathrm{~s}$
1 ns ;
except pulse, 300 ps

TTL-compatible into 50Ω $>450 \mathrm{~ns}$
1 MHz
≤ 4 Agilent 33250As

CLOCK REFERENCE

Phase Offset

Range: $\quad-360^{\circ}$ to $+360^{\circ}$
Resolution: $\quad 0.001^{\circ}$
External Reference Input
Lock Range:
Level:
Impedance: $\quad 1 \mathrm{k} \Omega$ nominal, ac coupled
Lock Time: <2s
Internal Reference Output

Frequency:
Level:
Impedance:

SYNC OUTPUT

Level:
Impedance:
TTL-compatible
into $>1 \mathrm{k} \Omega$
50Ω nominal

[^2]
GENERAL SPECIFICATIONS

Power Supply:	$100-240 \mathrm{~V}(\pm 10 \%)$ for $50-60 \mathrm{~Hz}$ operation, $100-127 \mathrm{~V}$ ($\pm 10 \%$) for $50-400 \mathrm{~Hz}$ operation. IEC 60664 CAT II
Power Consumption:	140 VA
Operating Environment:	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ 80% R.H. to $40^{\circ} \mathrm{C}$
Operating Altitude:	3000 meters
Pollution Degree:	Indoor or Sheltered Use, IEC 60664 Degree 2
Storage Temperature:	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Stored States:	Four (4) named user configurations
Power-On State:	Default or Last
Interface:	IEEE-488 and RS-232 standard
Language:	SCPI-1997, IEEE-488.2
Dimensions (WxHxD)	
Bench Top:	$254 \times 104 \times 374 \mathrm{~mm}$
Rack Mount:	$213 \times 89 \times 348 \mathrm{~mm}$
Weight:	4.6 kg

Safety Designed to:	$\begin{aligned} & \text { EN61010-1, CSA1010.1, } \\ & \text { UL-3111-1 } \end{aligned}$
EMC Tested to: ${ }^{1}$	IEC-61326-1 IEC-61000-4-3 criteria B IEC-61000-4-6 criteria B
Acoustic Noise:	40 dBA
Warm-Up Time:	1 hour
Calibration Interval:	1 year
Warranty:	3 years standard
Accessories Included:	User's Guide, Service Guide, Quick Reference Guide, Test Data, Connectivity Software, RS-232 Cable, Power Cord
${ }^{1}$ Radiated and conduct When the product is te to IEC/EN 61000-4-3: according to IEC/EN 6 may not meet criteria A	immunity testing: d at $3 \mathrm{~V} / \mathrm{m}$ according 5 or tested at 3 Vrms 00-4-6:1996, the product but does meet criteria B.

This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme à la norme NMB-001 du Canada.

PRODUCT DIMENSIONS

Quick Start

Quick Start

One of the first things you will want to do with your function generator is to become acquainted with the front panel. We have written the exercises in this chapter to prepare the instrument for use and help you get familiar with some of its front-panel operations. This chapter is divided into the following sections:

- To Prepare the Function Generator for Use, on page 21
- To Adjust the Carrying Handle, on page 22
- To Set the Output Frequency, on page 23
- To Set the Output Amplitude, on page 24
- To Set a DC Offset Voltage, on page 26
- To Set the Duty Cycle, on page 27
- To Configure a Pulse Waveform, on page 28
- To View a Waveform Graph, on page 29
- To Output a Stored Arbitrary Waveform, on page 30
- To Use the Built-In Help System, on page 31
- To Rack Mount the Function Generator, on page 33

To Prepare the Function Generator for Use

1 Check the list of supplied items.
Verify that you have received the following items with your instrument. If anything is missing, please contact your nearest Agilent Sales Office.

- One power cord.
- One User's Guide.
- This Service Guide.
- One folded Quick Reference Guide.
- Certificate of Calibration.
- Connectivity software on CD-ROM.
- One RS-232 cable.

Power 2 Connect the power cord and turn on the function generator.
Switch
Several power-on information messages are displayed after the function generator performs its power-on self-test. The GPIB address is displayed. The function generator powers up in the sine wave function at 1 kHz with an amplitude of 100 mV peak-to-peak (into a 50Ω termination). At power-on, the Output connector is disabled. To enable the Output connector, press the key.

If the function generator does not turn on, verify that the power cord is firmly connected to the power receptacle on the rear panel (the powerline voltage is automatically sensed at power-on). You should also make sure that the function generator is connected to a power source that is energized. Then, verify that the function generator is turned on.

If you need further assistance, refer to chapter 6 for instructions on returning the function generator to Agilent for service.

Chapter 2 Quick Start
To Adjust the Carrying Handle

To Adjust the Carrying Handle

To adjust the position, grasp the handle by the sides and pull outward. Then, rotate the handle to the desired position.

Bench-top viewing positions

Carrying position

To Set the Output Frequency

At power-on, the function generator outputs a sine wave at 1 kHz with an amplitude of 100 mV peak-to-peak (into a 50Ω termination). The following steps show you how to change the frequency to 1.2 MHz .

1 Press the "Freq" softkey.

The displayed frequency is either the power-on value or the frequency previously selected. When you change functions, the same frequency is used if the present value is valid for the new function. To set the waveform period instead, press the Freq softkey again to toggle to the Period softkey (the current selection is highlighted).

2 Enter the magnitude of the desired frequency.
Using the numeric keypad, enter the value "1.2".

3 Select the desired units.

Press the softkey that corresponds to the desired units. When you select the units, the function generator outputs a waveform with the displayed frequency (if the output is enabled). For this example, press MHz.

Note: You can also enter the desired value using the knob and arrow keys.

Chapter 2 Quick Start
To Set the Output Amplitude

To Set the Output Amplitude

At power-on, the function generator outputs a sine wave with an amplitude of 100 mV peak-to-peak (into a 50Ω termination).
The following steps show you how to change the amplitude to 50 mVrms .

1 Press the "Ampl" softkey.

The displayed amplitude is either the power-on value or the amplitude previously selected. When you change functions, the same amplitude is used if the present value is valid for the new function. To set the amplitude using a high level and low level, press the Ampl softkey again to toggle to the HiLevel and LoLevel softkeys (the current selection is highlighted).

2 Enter the magnitude of the desired amplitude.
Using the numeric keypad, enter the value " 50 ".

3 Select the desired units.

Press the softkey that corresponds to the desired units. When you select the units, the function generator outputs the waveform with the displayed amplitude (if the output is enabled). For this example, press $\mathbf{m V}$ RMs.

Note: You can also enter the desired value using the knob and arrow keys.

You can easily convert the displayed amplitude from one unit to another. For example, the following steps show you how to convert the amplitude from Vrms to Vpp.

4 Enter the numeric entry mode.

Press the $+\infty$ key to enter the numeric entry mode.

5 Select the new units.

Press the softkey that corresponds to the desired units. The displayed value is converted to the new units. For this example, press the Vpp softkey to convert 50 mVrms to its equivalent in volts peak-to-peak.

To change the displayed amplitude by decades, press the right-arrow key to move the cursor to the units on the right side of the display. Then, rotate the knob to increase or decrease the displayed amplitude by decades.

Chapter 2 Quick Start To Set a DC Offset Voltage

To Set a DC Offset Voltage

At power-on, the function generator outputs a sine wave with a dc offset of 0 volts (into a 50Ω termination). The following steps show you how to change the offset to -1.5 mVdc .

1 Press the "Offset" softkey.

The displayed offset voltage is either the power-on value or the offset previously selected. When you change functions, the same offset is used if the present value is valid for the new function.

2 Enter the magnitude of the desired offset.

Using the numeric keypad, enter the value " -1.5 ".

3 Select the desired units.

Press the softkey that corresponds to the desired units. When you select the units, the function generator outputs the waveform with the displayed offset (if the output is enabled). For this example, press mVdc.

Note: You can also enter the desired value using the knob and arrow keys.

Note: To select dc volts from the front panel, press uainy and then select the DC On softkey. Press the Offset softkey to enter the desired voltage level.

To Set the Duty Cycle

Applies only to square waves. At power-on, the duty cycle for square waves if 50%. You can adjust the duty cycle from 20% to 80% for output frequencies up to 25 MHz . The following steps show you how to change the duty cycle to 30%.

1 Select the square wave function.

Press the square key and then set the desired output frequency to any value less than 25 MHz .

2 Press the "Duty Cycle" softkey.
The displayed duty cycle is either the power-on value or the percentage previously selected. The duty cycle represents the amount of time per cycle that the square wave is at a high level (note the icon on the right side of the display).

3 Enter the desired duty cycle.

Using the numeric keypad or the knob, select a duty cycle value of " 30 ". The function generator adjusts the duty cycle immediately and outputs a square wave with the specified value (if the output is enabled).

Chapter 2 Quick Start

To Configure a Pulse Waveform

To Configure a Pulse Waveform

You can configure the function generator to output a pulse waveform with variable pulse width and edge time. The following steps show you how to configure a 500 ms pulse waveform with a pulse width of 10 ms and edge times of $50 \mu \mathrm{~s}$.

1 Select the pulse function.
Press the key to select the pulse function and output a pulse waveform with the default parameters.

2 Set the pulse period.

Press the Period softkey and then set the pulse period to 500 ms .

3 Set the pulse width.

Press the Pulse Width softkey and then set the pulse width to 10 ms . The pulse width represents the time from the 50% threshold of the rising edge to the 50% threshold of the next falling edge (note the display icon).

4 Set the edge time for both edges.
Press the Edge Time softkey and then set the edge time for both the rising and falling edges to $50 \mu \mathrm{~s}$. The edge time represents the time from the 10% threshold to the 90% threshold of each edge (note the display icon).

To View a Waveform Graph

In the Graph Mode, you can view a graphical representation of the current waveform parameters. Each softkey parameter is shown in a different color corresponding to the lines above the softkeys at the bottom of the display. Note that the softkeys are listed in the same order as in the normal display mode.

1 Enable the Graph Mode.

Press the Graph key to enable the Graph Mode. The name of the parameter currently selected is shown in the upper-left corner of the display and the numeric value is highlighted.

2 Select the desired parameter.

To select a specific parameter, note the colored bars above the softkeys at the bottom of the display and select the corresponding color. For example, to select amplitude, press the softkey below the magenta-colored bar.

- As in the normal display mode, you can edit numbers using the numeric keypad or the knob and arrow keys.
- Parameters which normally toggle when you press a key a second time (e.g., Freq / Period) also toggle in the Graph Mode.
- To exit the Graph Mode, press Grapp again.

The Graph key also serves as a Local key to restore front-panel control after remote interface operations.

Chapter 2 Quick Start

To Output a Stored Arbitrary Waveform

To Output a Stored Arbitrary Waveform

There are five built-in arbitrary waveforms stored in non-volatile memory. The following steps show you how to output the built-in "exponential fall" waveform from the front panel.

1 Select the arbitrary waveform function.

When you press the arb key to select the arbitrary waveform function, a temporary message is displayed indicating which waveform is currently selected (the default is "exponential rise").

2 Select the active waveform.

Press the Select Wform softkey and then press the Built-In softkey to select from the five built-in waveforms. Then press the Exp Fall softkey. The waveform is output using the present settings for frequency, amplitude, and offset unless you change them.

The selected waveform is now assigned to the And khenever you press this key, the selected arbitrary waveform is output. To quickly determine which arbitrary waveform is currently selected, press Ario.

To Use the Built-In Help System

The built-in help system is designed to provide context-sensitive assistance on any front-panel key or menu softkey. A list of help topics is also available to assist you with several front-panel operations.

1 View the help information for a function key.
Press and hold down the sine key. If the message contains more information than will fit on the display, press the \downarrow softkey or turn the knob clockwise to view the remaining information.

Sine Function

Press DONE to exit the help menu.
2 View the help information for a menu softkey.
Press and hold down the Freq softkey. If the message contains more information than will fit on the display, press the \downarrow softkey or rotate the knob clockwise to view the remaining information.

Frequency $/$ Period
Sets the waveform frequency or period. Press this softkey again to toggle between the choices.

DONE
Press DONE to exit the help menu.

Chapter 2 Quick Start

3 View the list of help topics.

Press the Help key to view the list of available help topics. To scroll through the list, press the \uparrow or \downarrow softkey or rotate the knob. Select the third topic "Get HELP on any key" and then press SELECT.

Get HELP on any key

To get context-sensitive help on any front-panel
key or menu softkey, press and hold down that key.
DONE
Press DONE to exit the help menu.

4 View the help information for displayed messages.

Whenever a limit is exceeded or any other invalid configuration is found, the function generator will display a message. For example, if you enter a value that exceeds the frequency limit for the selected function, a message will be displayed. The built-in help system provides additional information on the most recent message to be displayed.

Press the Help, select the first topic "View the last message displayed", and then press SELECT.

```
Frequency upper limit = 80.000,000,01Hz.
The specified value exceeds the upper limit for this
parameter. The instrument has set the parameter
equal to the upper limit.

Local Language Help: The built-in help system in available in multiple languages. All messages, context-sensitive help, and help topics appear in the selected language. The menu softkey labels and status line messages are not translated.

To select the local language, press the Uillity key, press the System softkey, and then press the Help In softkey. Select the desired language.

\section*{To Rack Mount the Function Generator}

You can mount the Agilent 33250A in a standard 19-inch rack cabinet using one of two optional kits available. Instructions and mounting hardware are included with each rack-mounting kit. Any Agilent System II instrument of the same size can be rack-mounted beside the Agilent 33250A.

Note: Remove the carrying handle, and the front and rear rubber bumpers, before rack-mounting the instrument.


To remove the handle, rotate it to vertical and pull the ends outward.


To remove the rubber bumper, stretch a corner and then slide it off.

Chapter 2 Quick Start
To Rack Mount the Function Generator


To rack mount a single instrument, order adapter kit 5063-9240.


To rack mount two instruments side-by-side, order lock-link kit 5061-9694 and flange kit 5063-9212. Be sure to use the support rails in the rack cabinet.

In order to prevent overheating, do not block the flow of air into or out of the instrument. Be sure to allow enough clearance at the rear, sides, and bottom of the instrument to permit adequate internal airflow.

\section*{Front-Panel Menu Operation}

\section*{Front-Panel Menu Operation}

This chapter introduces you to the front-panel keys and menu operation. This chapter does not give a detailed description of every front-panel key or menu operation. It does, however, give you an overview of the frontpanel menus and many front-panel operations. See the Agilent 33250A User's Guide for a complete discussion of the function generator's capabilities and operation.
- Front-Panel Menu Reference, on page 37
- To Reset the Function Generator, on page 39
- To Select the Output Termination, on page 39
- To Read the Calibration Information, on page 40
- To Unsecure and Secure for Calibration, on page 41
- To Store the Instrument State, on page 44
- To Configure the Remote Interface, on page 45

\section*{Front-Panel Menu Reference}

This section gives an overview of the front-panel menus. The remainder of this chapter shows examples of using the front-panel menus.

\section*{Mod Configure the modulation parameters for AM, FM, and FSK.}
- Select the modulation type.
- Select an internal or external modulation source.
- Specify the AM modulation depth, modulating frequency, and modulation shape.
- Specify the FM frequency deviation, modulating frequency, and modulation shape.
- Specify the FSK "hop" frequency and FSK rate.

\section*{Configure the parameters for frequency sweep.}
- Select linear or logarithmic sweeping.
- Select the start/stop frequencies or center/span frequencies.
- Select the time in seconds required to complete a sweep.
- Specify a marker frequency.
- Specify an internal or external trigger source for the sweep.
- Specify the slope (rising or falling edge) for an external trigger source.
- Specify the slope (rising or falling edge) of the "Trig Out" signal.

\section*{Burst Configure the parameters for burst.}
- Select the triggered ( N Cycle) or externally-gated burst mode.
- Select the number of cycles per burst ( 1 to 1,000,000, or Infinite).
- Select the starting phase angle of the burst \(\left(-360^{\circ}\right.\) to \(\left.+360^{\circ}\right)\).
- Specify the time from the start of one burst to the start of the next burst.
- Specify a delay between the trigger and the start of the burst.
- Specify an internal or external trigger source for the burst.
- Specify the slope (rising or falling edge) for an external trigger source.
- Specify the slope (rising or falling edge) of the "Trig Out" signal.

\section*{Chapter 3 Front-Panel Menu Operation}

\section*{Store and recall instrument states.}
- Store up to four instrument states in non-volatile memory.
- Assign a custom name to each storage location.
- Recall stored instrument states.
- Restore all instrument settings to their factory default values.
- Select the instrument's power-on configuration (last or factory default).

\section*{Configure system-related parameters.}
- Generate a dc-only voltage level.
- Enable/disable the Sync signal which is output from the "Sync" connector.
- Select the output termination ( \(1 \Omega\) to \(10 \mathrm{k} \Omega\), or Infinite).
- Enable/disable amplitude autoranging.
- Select the waveform polarity (normal or inverted).
- Select the GPIB address.
- Configure the RS-232 interface (baud rate, parity, and handshake mode).
- Select how periods and commas are used in numbers displayed on the front panel.
- Select the local language for front-panel messages and help text.
- Enable/disable the tone heard when an error is generated.
- Enable/disable the display bulb-saver mode.
- Adjust the contrast setting of the front-panel display.
- Perform an instrument self-test.
- Secure/unsecure the instrument for calibration and perform manual calibrations.
- Query the instrument's firmware revision codes.

\section*{Help View the list of Help topics.}
- View the last message displayed.
- View the remote command error queue.
- Get HELP on any key.
- How to generate a dc-only voltage level.
- How to generate a modulated waveform.
- How to create an arbitrary waveform.
- How to reset the instrument to its default state.
- How to view a waveform in the Graph Mode.
- How to synchronize multiple instruments.
- How to obtain Agilent Technical Support.

\section*{To Reset the Function Generator}

To reset the instrument to its factory default state, press sion lan then select the Set to Defaults softkey. Select YES to confirm the operation.

A complete listing of the instrument's power-on and reset conditions, see the "Factory Default Settings" table inside the rear cover of this manual.

\section*{To Select the Output Termination}

The Agilent 33250A has a fixed series output impedance of 50 ohms to the front-panel Output connector. If the actual load impedance is different than the value specified, the displayed amplitude and offset levels will be incorrect. The load impedance setting is simply provided as a convenience to ensure that the displayed voltage matches the expected load.

1 Press unilive

2 Navigate the menu to set the output termination.
Press the Output Setup softkey and then select the Load softkey.


3 Select the desired output termination.
Use the knob or numeric keypad to select the desired load impedance or press the Load softkey again to choose "High Z".

\section*{To Read the Calibration Information}

You can use the instrument's calibration memory to read the calibration count and calibration message.

Calibration Count You can query the instrument to determine how many calibrations have been performed. Note that your instrument was calibrated before it left the factory. When you receive your instrument, read the count to determine its initial value. The count value increments by one for each calibration point, and a complete calibration may increase the value by many counts.

Calibration Message The instrument allows you to store one message in calibration memory. For example, you can store such information as the date when the last calibration was performed, the date when the next calibration is due, the instrument's serial number, or even the name and phone number of the person to contact for a new calibration.

You can record a calibration message only from the remote interface and only when the instrument is unsecured.

You can read the message from either the front-panel or over the remote interface. You can read the calibration message whether the instrument is secured or unsecured.

\section*{1 Select the Cal Info interface.}

Press urility and then select the Cal Info softkey from the "Test/Cal" menu.
The first line in the display shows the calibration count.
The second line shows the calibration message.
The last line indicates the current version of the firmware.
The calibration information will time-out and disappear after a few seconds. Select the Cal Info softkey to show the information again.

\section*{2 Exit the menu.}

Press the DONE softkey.

\section*{To Unsecure and Secure for Calibration}

This feature allows you to enter a security code to prevent accidental or unauthorized adjustments of the instrument. When you first receive your instrument, it is secured. Before you can adjust the instrument, you must unsecure it by entering the correct security code.
- The security code is set to AT33250A when the instrument is shipped from the factory. The security code is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem: PRESet command).
- The security code may contain up to 12 alphanumeric characters. The first character must be a letter, but the remaining characters can be letters, numbers, or an underscore ( _ ). You do not have to use all 12 characters but the first character must always be a letter.

Note: If you forget your security code, you can disable the security feature by applying a temporary short inside the instrument as described in "To Unsecure the Instrument Without the Security Code", on page 69.

Chapter 3 Front-Panel Menu Operation
To Unsecure and Secure for Calibration

\section*{To Unsecure for Calibration}

1 Select the Secure Code interface.
Press unily and then select the Test/Cal softkey.


\section*{2 Enter the Secure Code.}

Use the knob to change the displayed character. Use the arrow keys to move to the next character.


When the last character of the secure code is entered, the instrument will be unsecured.

\section*{3 Exit the menu.}

Press the DONE softkey.

\section*{To Secure After Calibration}

1 Select the Secure Code interface.
Press andine then select the Test/Cal softkey.


2 Enter a Secure Code.
Enter up to 12 alphanumeric characters. The first character must be a letter.

Use the knob to change the displayed character. Use the arrow keys to move to the next character.


\section*{\(+\)}


3 Secure the Instrument.
Select the Secure softkey.
4 Exit the menu.
Press the DONE softkey.

\section*{Chapter 3 Front-Panel Menu Operation}

\section*{To Store the Instrument State}

You can store the instrument state in one of four non-volatile storage locations. A fifth storage location automatically holds the power-down configuration of the instrument. When power is restored, the instrument can automatically return to its state before power-down.

1 Select the desired storage location.



2 Select a custom name for the selected location.
If desired, you can assign a custom name to each of the four locations.

- The name can contain up to 12 characters. The first character must be a letter but the remaining characters can be letters, numbers, or the underscore character ("_").
- To add additional characters, press the right-arrow key until the cursor is to the right of the existing name and then turn the knob.
- To delete all characters to the right of the cursor position, press 4.
- To use numbers in the name, you can enter them directly from the numeric keypad. Use the decimal point from the numeric keypad to add the underscore character (" "") to the name.

\section*{3 Store the instrument state.}

Press the STORE STATE softkey. The instrument stores the selected function, frequency, amplitude, dc offset, duty cycle, symmetry, as well as any modulation parameters in use. The instrument does not store volatile waveforms created in the arbitrary waveform function.

\section*{To Configure the Remote Interface}

The instrument is shipped with both a GPIB (IEEE-488) interface and an RS-232 interface. Only one interface can be enabled at a time. The GPIB interface is selected when the instrument is shipped from the factory.

\section*{GPIB Configuration}

\section*{1 Select the GPIB interface.}

Press unition and then select the GPIB softkey from the "I/O" menu.


\section*{2 Select the GPIB address.}

Press the GPIB Address softkey and enter the desired address using the numeric keypad or knob. The factory setting is " 10 ".
The GPIB address is shown on the front-panel display at power-on.

\section*{3 Exit the menu.}

Press the DONE softkey.

Chapter 3 Front-Panel Menu Operation To Configure the Remote Interface

\section*{RS-232 Configuration}

\section*{1 Select the RS-232 interface.}

Press Uuilify and then select the RS-232 softkey from the "I/O" menu.
\begin{tabular}{|l|l|l|}
\hline \\
\hline GPIB RS-232 & \\
\hline
\end{tabular}

\section*{2 Set the baud rate.}

Press the Baud Rate softkey and select one of the following:
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 (factory setting), or 115200 baud.

\section*{3 Select the parity and number of data bits.}

Press the Parity/\# Bits softkey and select one of the following:
None ( 8 data bits, factory setting), Even ( 7 data bits), or Odd ( 7 data bits).
When you set the parity, you are also setting the number of data bits.

\section*{4 Select the handshake mode.}

Press the Handshake softkey and select one of the following:
None, DTR/DSR (factory setting), Modem, RTS / CTS, or XON/XOFF.

\section*{5 Exit the menu.}

Press the DONE softkey.

\section*{Calibration Procedures}

\section*{Calibration Procedures}

This chapter contains procedures for verification of the instrument's performance and adjustment (calibration). The chapter is divided into the following sections:
- Agilent Technologies Calibration Services, on page 49
- Calibration Interval, on page 50
- Adjustment is Recommended, on page 50
- Time Required for Calibration, on page 51
- Automating Calibration Procedures, on page 52
- Recommended Test Equipment, on page 53
- Test Considerations, on page 54
- Performance Verification Tests, on page 55
- Internal Timebase Verification, on page 60
- AC Amplitude (high-impedance) Verification, on page 61
- Low Frequency Flatness Verification, on page 62
- 0 dB Range Flatness Verification, on page 63
- +10 dB Range Flatness Verification, on page 65
- +20 dB Range Flatness Verification, on page 66
- Calibration Security, on page 68
- Calibration Message, on page 70
- Calibration Count, on page 70
- General Calibration/Adjustment Procedure, on page 71
- Sequence of Adjustments, on page 72
- Aborting a Calibration in Progress, on page 72
- Self-Test, on page 73
- Frequency (Internal Timebase) Adjustment, on page 74
- Internal ADC Adjustment, on page 75
- Output Impedance Adjustment, on page 76
- AC Amplitude (high-impedance) Adjustment, on page 78
- Low Frequency Flatness Adjustment, on page 80
- 0 dB Range Flatness Adjustments, on page 81
- +10 dB Range Flatness Adjustments, on page 83
- +20 dB Range Flatness Adjustment, on page 85
- Pulse Width (Trailing Edge Delay) Adjustment, on page 87
- Pulse Edge Time Adjustment, on page 88
- Duty Cycle Adjustment, on page 89
- Output Amplifier Adjustment (Optional), on page 90
- Calibration Errors, on page 91

\title{
Chapter 4 Calibration Procedures Agilent Technologies Calibration Services
}

Closed-Case Electronic Calibration The instrument features closedcase electronic calibration. No internal mechanical adjustments are required. The instrument calculates correction factors based upon the input reference value you set. The new correction factors are stored in non-volatile memory until the next calibration adjustment is performed. Non-volatile EEPROM calibration memory does not change when power has been off or after a remote interface reset.

\section*{Agilent Technologies Calibration Services}

When your instrument is due for calibration, contact your local Agilent Technologies Service Center for a low-cost recalibration. The Agilent 33250A is supported on automated calibration systems which allow Agilent to provide this service at competitive prices.

\section*{Chapter 4 Calibration Procedures \\ Calibration Interval}

\section*{Calibration Interval}

The instrument should be calibrated on a regular interval determined by the measurement accuracy requirements of your application. A 1-year interval is adequate for most applications. Accuracy specifications are warranted only if adjustment is made at regular calibration intervals. Accuracy specifications are not warranted beyond the 1-year calibration interval. Agilent Technologies does not recommend extending calibration intervals beyond 2 years for any application.

\section*{Adjustment is Recommended}

Whatever calibration interval you select, Agilent Technologies recommends that complete re-adjustment should always be performed at the calibration interval. This will assure that the Agilent 33250A will remain within specification for the next calibration interval. This criteria for re-adjustment provides the best long-term stability. Performance data measured using this method can be used to extend future calibration intervals.

Use the Calibration Count (see page 70) to verify that all adjustments have been performed.

\section*{Time Required for Calibration}

The Agilent 33250A can be automatically calibrated under computer control. With computer control you can perform the complete calibration procedure and performance verification tests in approximately 30 minutes once the instrument is warmed-up (see "Test Considerations" on page 54). Manual adjustments and verifications, using the recommended test equipment, will take approximately 2 hours.


\section*{Chapter 4 Calibration Procedures}

\section*{Automating Calibration Procedures}

\section*{Automating Calibration Procedures}

You can automate the complete verification and adjustment procedures outlined in this chapter if you have access to programmable test equipment. You can program the instrument configurations specified for each test over the remote interface. You can then enter readback verification data into a test program and compare the results to the appropriate test limit values.
You can also adjust the instrument from the remote interface. Remote adjustment is similar to the local front-panel procedure. You can use a computer to perform the adjustment by first selecting the required function and range. The calibration value is sent to the instrument and then the calibration is initiated over the remote interface. The instrument must be unsecured prior to initiating the calibration procedure.
For further information on programming the instrument, see chapters 3 and 4 in the Agilent 33250A User's Guide.

\section*{Recommended Test Equipment}

The test equipment recommended for the performance verification and adjustment procedures is listed below. If the exact instrument is not available, substitute calibration standards of equivalent accuracy.
\begin{tabular}{|c|c|c|c|}
\hline Instrument & Requirements & Recommended Model & Use* \\
\hline Digital Multimeter (DMM) & ac volts, true rms, ac coupled accuracy: \(\pm 0.02 \%\) to 1 MHz dc volts accuracy: 50 ppm resolution: \(100 \mu \mathrm{~V}\) Resistance Offset-compensated accuracy: \(\pm 0.1 \Omega\) & Agilent 3458A & Q, P, T \\
\hline Power Meter & \begin{tabular}{l}
100 kHz to 100 MHz \\
\(1 \mu \mathrm{~W}\) to \(100 \mathrm{~mW}(-30 \mathrm{dBm}\) to \(+20 \mathrm{dBm})\) accuracy: 0.02 dB \\
resolution: 0.01 dB
\end{tabular} & Agilent E4418B & Q, P, T \\
\hline Power Head & \begin{tabular}{l}
100 kHz to 100 MHz \\
\(1 \mu \mathrm{~W}\) to \(100 \mathrm{~mW}(-30 \mathrm{dBm}\) to \(+20 \mathrm{dBm})\)
\end{tabular} & Agilent 8482A & Q, P, T \\
\hline Attenuator & -20 dB & Agilent 8491A Opt 020 & Q, P, T \\
\hline Frequency Meter & accuracy: 0.1 ppm & Agilent 53131A Opt 010 (high stability) & Q, P, T \\
\hline Oscilloscope & \[
\begin{aligned}
& 500 \mathrm{MHz} \\
& 2 \mathrm{Gs} / \text { second } \\
& 50 \Omega \text { input termination }
\end{aligned}
\] & Agilent 54831B & Q, P, T \\
\hline Adapter & \(N\) type (m) to BNC (m) & \(N\) type (m) to BNC (m) & Q, P, T \\
\hline Cable & BNC (m) to dual-banana (f) & Agilent 10110B & Q, P, T \\
\hline Cable (2 required) & Dual banana (m) to dual banana (m) & Agilent 11000-60001 & Q, P, T \\
\hline Cable & RG58, BNC (m) to dual banana & Agilent 11001-60001 & Q, P, T \\
\hline Cable & RG58, BNC (m) to BNC (m) & Agilent 8120-1840 & Q, P, T \\
\hline \multicolumn{4}{|c|}{* \(\mathrm{Q}=\) Quick Verification \(\quad \mathrm{P}=\) Performance Verification \(\mathrm{T}=\) Troubleshooting \(\quad \mathrm{O}=\) Optional Verification} \\
\hline
\end{tabular}

Chapter 4 Calibration Procedures

\section*{Test Considerations}

\section*{Test Considerations}

For optimum performance, all procedures should comply with the following recommendations:
- Assure that the calibration ambient temperature is stable and between \(18^{\circ} \mathrm{C}\) and \(28^{\circ} \mathrm{C}\). Ideally, the calibration should be performed at \(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\).
- Assure ambient relative humidity is less than \(80 \%\).
- Allow a 1-hour warm-up period before verification or adjustment.
- Keep the measurement cables as short as possible, consistent with the impedance requirements.
- Use only RG-58 or equivalent \(50 \Omega\) cable.

\section*{Performance Verification Tests}

Use the Performance Verification Tests to verify the measurement performance of the instrument. The performance verification tests use the instrument's specifications listed in the "Specifications" chapter beginning on page 13.

You can perform four different levels of performance verification tests:
- Self-Test A series of internal verification tests that give high confidence that the instrument is operational.
- Quick Verification A combination of the internal self-tests and selected verification tests.
- Performance Verification Tests An extensive set of tests that are recommended as an acceptance test when you first receive the instrument or after performing adjustments.
- Optional Verification Tests Tests not performed with every calibration. Perform these tests following repairs to the output amplifier.

\section*{Chapter 4 Calibration Procedures}

\section*{Performance Verification Tests}

\section*{Self-Test}

A brief power-on self-test occurs automatically whenever you turn on the instrument. This limited test assures that the instrument is operational.

To perform a complete self-test:

1 Press unimy on the front panel.
2 Select the Self Test softkey from the "Test/Cal" menu.
A complete description of the self-tests can be found in chapter 6. The instrument will automatically perform the complete self-test procedure when you release the key. The self-test will complete in approximately 30 seconds.
- If the self-test is successful, "Self Test Pass" is displayed on the front panel.
- If the self-test fails, "Self Test Fail" and an error number are displayed. If repair is required, see chapter 6 , "Service," for further details.

\section*{Quick Performance Check}

The quick performance check is a combination of internal self-test and an abbreviated performance test (specified by the letter \(\mathbf{Q}\) in the performance verification tests). This test provides a simple method to achieve high confidence in the instrument's ability to functionally operate and meet specifications. These tests represent the absolute minimum set of performance checks recommended following any service activity. Auditing the instrument's performance for the quick check points (designated by a \(\mathbf{Q}\) ) verifies performance for normal accuracy drift mechanisms. This test does not check for abnormal component failures.
To perform the quick performance check, do the following:
1 Perform a complete self-test. A procedure is given on page 56.
2 Perform only the performance verification tests indicated with the letter \(\mathbf{Q}\).

3 If the instrument fails the quick performance check, adjustment or repair is required.

\section*{Performance Verification Tests}

The performance verification tests are recommended as acceptance tests when you first receive the instrument. The acceptance test results should be compared against the specifications given in chapter 1. After acceptance, you should repeat the performance verification tests at every calibration interval.

If the instrument fails performance verification, adjustment or repair is required.

Adjustment is recommended at every calibration interval. If adjustment is not made, you must guard band, using no more than \(80 \%\) of the specifications listed in chapter 1 , as the verification limits.

\section*{Chapter 4 Calibration Procedures}

Performance Verification Tests

\section*{Amplitude and Flatness Verification Procedures}

Special Note: Measurements made during the AC Amplitude (highimpedance) Verification procedure (see page 61) are used as reference measurements in the flatness verification procedures (beginning on page 62). Additional reference measurements and calculated references are used in the flatness verification procedures. Photo-copy and use the table on page 59 to record these reference measurements and perform the calculations.

The flatness verification procedures use both a DMM and a Power Meter to make the measurements. To correct the difference between the DMM and Power Meter measurements, the Power Meter reference measurement level is adjusted to set the 0.00 dB level to the DMM measurement made at 1 kHz . The flatness error of the DMM at 100 kHz is used to set the required 0.00 dB reference.

The instrument internally corrects the difference between the high-Z input of the DMM and the \(50 \Omega\) input of the Power Meter when setting the output level.
The reference measurements must also be converted from Vrms (made by the DMM) to dBm (made by the Power Meter).

The equation used for the conversion from Vrms (High-Z) to dBm (at \(50 \Omega\) ) is as follows:
\[
\text { Power }(\mathrm{dBm})=10 \log \left(5.0 * \mathrm{~V}_{\mathrm{rms}}{ }^{2}\right)
\]

Flatness measurements for the \(-10 \mathrm{~dB},-20 \mathrm{~dB}\), and -30 dB attenuator ranges are verified as a part of the 0 dB verification procedure. No separate verification procedure is given for these ranges.

\section*{Amplitude and Flatness Verification Worksheet}
1. Enter the following measurements (from procedure on page 61).
\begin{tabular}{lll}
1 kHz _OdB_reference & \(=\) & Vrms \\
1 kHz _10dB_reference & \(=\) & Vrms \\
1 kHz _20dB_reference & \(=\) & Vrms
\end{tabular}
2. Calculate the \(\mathbf{d B m}\) value of the \(\mathbf{r m s}\) voltages.

3. Enter the following measurements (from the procedure on page 62).
\begin{tabular}{lll}
100 kHz _0dB_reference & \(=\) & Vrms \\
100 kHz _10dB_reference & \(=\square \mathrm{Vrms}\) \\
100 kHz _20dB_reference & \(=\square \mathrm{Vrms}\)
\end{tabular}
4. Calculate the dBm value of the rms voltages.
\begin{tabular}{|c|c|}
\hline 100kHz_OdB_reference_dBm & 10 * log(5.0 * 100kHz_OdB_reference \({ }^{2}\) ) \\
\hline & dBm \\
\hline 100kHz_10dB_reference_dBm & 10 * \(\log \left(5.0\right.\) * 100kHz_10dB_reference \({ }^{2}\) ) \\
\hline & dBm \\
\hline 100kHz_20dB_reference_dBm & 10 * \(\log \left(5.0\right.\) * 100kHz_20dB_reference \({ }^{2}\) ) \\
\hline & dBm \\
\hline
\end{tabular}
5. Calculate the offset values.


\section*{Chapter 4 Calibration Procedures} Internal Timebase Verification

\section*{Internal Timebase Verification}

This test verifies the output frequency accuracy of the instrument. All output frequencies are derived from a single generated frequency.

1 Connect a frequency counter as shown below (the frequency counter input should be terminated at \(50 \Omega\) ).


2 Set the instrument to the output described in the table below and measure the output frequency. Be sure the instrument output is enabled.
\begin{tabular}{|l|l|l|ll|}
\hline \multicolumn{3}{|c|}{ Agilent 33250A } & \multicolumn{2}{c|}{ Measurement } \\
\hline Qunction & Amplitude & Frequency & Nominal & Error \\
\hline & Sine Wave & 1.00 Vpp & \(10.000,000,0 \mathrm{MHz}\) & 10.000 MHz \\
\hline
\end{tabular}

3 Compare the measured frequency to the test limits shown in the table.

\section*{AC Amplitude (high-impedance) Verification}

This procedure checks the ac amplitude output accuracy at a frequency of 1 kHz , and establishes reference measurements for the higher frequency flatness verification procedures.

1 Set the DMM to measure Vrms Volts. Connect the DMM as shown below.


2 Set the instrument to each output described in the table below and measure the output voltage with the DMM. Press urilify to set the output impedance to High-Z. Be sure the output is enabled.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Agilent 33250A} & \multicolumn{2}{|r|}{Measurement} \\
\hline & Output Setup & Function & Frequency & Amplitude & Nominal & Error* \\
\hline Q & High Z & Sine Wave & 1.000 kHz & 20.0 mVrms & 0.020 Vrms & \(\pm 0.00091 \mathrm{Vrms}\) \\
\hline Q & High Z & Sine Wave & 1.000 kHz & 67.0 mVrms & 0.067 Vrms & \(\pm 0.00138 \mathrm{Vrms}\) \\
\hline Q & High Z & Sine Wave & 1.000 kHz & 200.0 mVrms & 0.200 Vrms & \(\pm 0.00271\) Vrms \\
\hline Q & High Z & Sine Wave & 1.000 kHz & 670.0 mVrms & \(0.670 \mathrm{Vrms}^{1}\) & \(\pm 0.00741\) Vrms \\
\hline Q & High Z & Sine Wave & 1.000 kHz & 2.000 Vrms & 2.0000 Vrms \({ }^{2}\) & \(\pm 0.0207 \mathrm{Vrms}\) \\
\hline Q & High Z & Sine Wave & 1.000 kHz & 7.000 Vrms & \(7.000 \mathrm{Vrms}^{3}\) & \(\pm 0.0707 \mathrm{Vrms}\) \\
\hline Q & High Z & Square Wave \({ }^{4}\) & 1.000 kHz & 900.0 mVrms & 0.900 Vrms & \(\pm 0.0100 \mathrm{Vrms}\) \\
\hline
\end{tabular}
* Based upon \(1 \%\) of setting \(\pm 1 \mathrm{mVpp}\) ( \(50 \Omega\) ); converted to Vrms for High-Z.
\({ }^{1}\) Enter the measured value on the worksheet (page 59) as 1 kHz _OdB_reference.
\({ }_{3}^{2}\) Enter the measured value on the worksheet (page 59) as 1 kHz 10 dB _reference.
\({ }^{3}\) Enter the measured value on the worksheet (page 59) as 1 kHz _20dB_reference.
\({ }^{4}\) Square wave amplitude accuracy is not specified. This measurement and error may be used as a guideline for typical operation.

3 Compare the measured voltage to the test limits shown in the table.

\section*{Chapter 4 Calibration Procedures}

\section*{Low Frequency Flatness Verification}

\section*{Low Frequency Flatness Verification}

This procedure checks the AC amplitude flatness at 100 kHz using the reference measurements recorded in the Amplitude and Flatness Verification Worksheet. These measurements also establish an error value used to set the power meter reference. The transfer measurements are made at a frequency of 100 kHz using both the DMM and the power meter.

1 Set the DMM to measure ac Volts. Connect the DMM as shown in the figure on page 61.

2 Set the instrument to each output described in the table below and measure the output voltage with the DMM. Press vellify to set the output impedance to High-Z. Be sure the output is enabled.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Agilent 33250A} & \multicolumn{2}{|r|}{Measurement} \\
\hline & Output Setup & Function & Frequency & Amplitude & Nominal & Error \\
\hline Q & High Z & Sine Wave & 100.000 kHz & 670.0 mVrms & \(0.670 \mathrm{Vrms}^{1}\) & \(\pm 0.0067 \mathrm{Vrms}\) \\
\hline Q & High Z & Sine Wave & 100.000 kHz & 2.0 Vrms & \(2.000 \mathrm{Vrms}^{2}\) & \(\pm 0.020 \mathrm{Vrms}\) \\
\hline Q & High Z & Sine Wave & 100.000 kHz & 7.000 Vrms & \(7.000 \mathrm{Vrms}^{3}\) & \(\pm 0.070\) Vrms \\
\hline
\end{tabular}
\({ }^{1}\) Enter the measured value on the worksheet (page 59) as 100 kHz _OdB_reference.
\({ }^{2}\) Enter the measured value on the worksheet (page 59) as \(100 \mathrm{kHz} \_10 \mathrm{~dB}\) _reference.
\({ }^{3}\) Enter the measured value on the worksheet (page 59) as \(100 \mathrm{kHz} \_20 \mathrm{~dB}\) _reference.

3 Compare the measured voltage to the test limits shown in the table.
4 You have now recorded all the required measurements on the worksheet (page 59). Complete the worksheet by making all the indicated calculations.

\section*{0 dB Range Flatness Verification}

This procedure checks the high frequency ac amplitude flatness above 100 kHz on the 0 dB attenuator range.

1 Connect the power meter to measure the output amplitude of the instrument as shown below.


2 Set the power meter reference level to equal \(100 \mathrm{kHz} \mathrm{\_} 0 d B \_o f f s e t\). This sets the power meter to directly read the flatness error specification. \(100 \mathrm{kHz} 0 d B \_o f f s e t\) is calculated on the Amplitude and Flatness Verification Worksheet.

\section*{Chapter 4 Calibration Procedures}

\section*{0 dB Range Flatness Verification}

3 Set the instrument to each output described in the table below and measure the output amplitude with the power meter. Press to set the output impedance to \(50 \Omega\). Be sure the output is enabled.


4 Compare the measured output to the test limits shown in the table.

\section*{+10 dB Range Flatness Verification}

This procedure checks the high frequency ac amplitude flatness above 100 kHz on the +10 dB attenuator range.

1 Connect the power meter to measure the output amplitude of the instrument as shown on page 63.

2 Set the power meter reference level to equal to the calculated \(100 \mathrm{kHz} \_10 \mathrm{~dB} \_\)offset value. This sets the power meter to directly read the flatness error specification. \(100 \mathrm{kHz} \_10 \mathrm{~dB}\) _offset is calculated on the Amplitude and Flatness Verification Worksheet.

3 Set the instrument to each output described in the table below and measure the output amplitude with the power meter. Press utily to set the output impedance to \(50 \Omega\). Be sure the output is enabled.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Agilent 33250A} & \multicolumn{2}{|l|}{Measurement} \\
\hline & Output Setup & Function & Amplitude & Frequency & Nominal & Error \\
\hline Q & \(50 \Omega\) & Sine Wave & +13.00 dBm & 100.000 kHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 200.000 kHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 500.000 kHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 1.500 MHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 5.000 MHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline Q & \(50 \Omega\) & Sine Wave & +13.00 dBm & 10.000 MHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 25.000 MHz & 0 dB & \(\pm 0.177 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 40.000 MHz & 0 dB & \(\pm 0.177 \mathrm{~dB}\) \\
\hline Q & \(50 \Omega\) & Sine Wave & +13.00 dBm & 50.000 MHz & 0 dB & \(\pm 0.177 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 60.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 65.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & \(+13.00 \mathrm{dBm}\) & 70.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +13.00 dBm & 75.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline Q & \(50 \Omega\) & Sine Wave & +13.00 dBm & 80.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline
\end{tabular}

4 Compare the measured output to the test limits shown in the table.

Chapter 4 Calibration Procedures

\section*{+20 dB Range Flatness Verification}

This procedure checks the high frequency ac amplitude flatness above 100 kHz on the +20 dB attenuator range.

1 Connect the power meter to measure the output voltage of the instrument as shown below.


2 Set the power meter reference level to equal to the calculated \(100 \mathrm{kHz} \_20 \mathrm{~dB}\) _offset value. This sets the power meter to directly read the flatness error specification. 100 kHz _20dB_offset is calculated on the Amplitude and Flatness Verification Worksheet.

\section*{Caution}

Most power meters will require an attenuator or special power head to measure the +20 dB output.

3 Set the instrument to each output described in the table below and measure the output amplitude with the power meter. Press uility to set the output impedance to \(50 \Omega\). Be sure the output is enabled
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Agilent 33250A} & \multicolumn{2}{|r|}{Measurement} \\
\hline & Output Setup & Function & Amplitude & Frequency & Nominal & Error \\
\hline Q & \(50 \Omega\) & Sine Wave & +23.90 dBm & 100.000 kHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 200.000 kHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 500.000 kHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 1.500 MHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 5.000 MHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline Q & \(50 \Omega\) & Sine Wave & +23.90 dBm & 10.000 MHz & 0 dB & \(\pm 0.086 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 25.000 MHz & 0 dB & \(\pm 0.177 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 40.000 MHz & 0 dB & \(\pm 0.177 \mathrm{~dB}\) \\
\hline Q & \(50 \Omega\) & Sine Wave & +23.90 dBm & 50.000 MHz & 0 dB & \(\pm 0.177 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 60.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 65.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & \(+23.90 \mathrm{dBm}\) & 70.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline & \(50 \Omega\) & Sine Wave & +23.90 dBm & 75.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline Q & \(50 \Omega\) & Sine Wave & +23.90 dBm & 80.000 MHz & 0 dB & \(\pm 0.423 \mathrm{~dB}\) \\
\hline
\end{tabular}

4 Compare the measured output to the test limits shown in the table.

\section*{Chapter 4 Calibration Procedures \\ Calibration Security}

\section*{Calibration Security}

This feature allows you to enter a security code to prevent accidental or unauthorized adjustments of the instrument. When you first receive your instrument, it is secured. Before you can adjust the instrument, you must unsecure it by entering the correct security code.

See "To Unsecure and Secure for Calibration", on page 41 for a procedure to enter the security code.
- The security code is set to AT33250A when the instrument is shipped from the factory. The security code is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem: PRESet command).
- The security code may contain up to 12 alphanumeric characters. The first character must be a letter, but the remaining characters can be letters, numbers, or an underscore ( _ ). You do not have to use all 12 characters but the first character must always be a letter.

Note: If you forget your security code, you can disable the security feature by applying a temporary short inside the instrument as described on the following page.

\section*{To Unsecure the Instrument Without the Security Code}

To unsecure the instrument without the correct security code, follow the steps below. See "To Unsecure and Secure for Calibration" on page 41. See "Electrostatic Discharge (ESD) Precautions" on page 133 before beginning this procedure.

1 Disconnect the power cord and all input connections.
2 Remove the instrument cover. See "Disassembly" on page 140.
3 Remove the main power supply.
4 Apply a temporary short between the two exposed metal pads on the A1 assembly. The general location is shown in the figure below. On the PC board, the pads are marked CAL ORIDE.


5 Apply power and turn on the instrument.

\section*{WARNING Be careful not to touch the power line connections or high voltages on the power supply module.}

6 The display will show the message "Calibration security has been disabled". The instrument is now unsecured.

7 Turn off the instrument and remove the power cord.
8 Reassemble the instrument.
Now you can enter a new security code, see "To Unsecure and Secure for Calibration", on page 41. Be sure you record the new security code.

\title{
Chapter 4 Calibration Procedures \\ Calibration Message
}

\section*{Calibration Message}

The instrument allows you to store one message in calibration memory. For example, you can store such information as the date when the last calibration was performed, the date when the next calibration is due, the instrument's serial number, or even the name and phone number of the person to contact for a new calibration.

You can record a calibration message only from the remote interface and only when the instrument is unsecured.

You can read the message from either the front-panel or over the remote interface. You can read the calibration message whether the instrument is secured or unsecured. Reading the calibration message from the front panel is described on "To Read the Calibration Information", on page 40.

\section*{Calibration Count}

You can query the instrument to determine how many calibrations have been performed. Note that your instrument was calibrated before it left the factory. When you receive your instrument, read the count to determine its initial value. The count value increments by one for each calibration point, and a complete calibration may increase the value by many counts. See "To Read the Calibration Information", on page 40.

\section*{General Calibration/Adjustment Procedure}

The following procedure is the recommended method to complete an instrument calibration. This procedure is an overview of the steps required for a complete calibration. Additional details for each step in this procedure are given in the appropriate sections of this chapter.

1 Read "Test Considerations" on page 54.
2 Unsecure the instrument for calibration (see page 68).
3 Perform the verification tests, beginning on page page 55 , to characterize the instrument (incoming data).

4 Press untiy on the front panel.
5 Select the "Test / Cal" menu.
6 Select Perform Cal.
7 Enter the Setup Number for the procedure being performed. The default setup number is " 1 " and, from the front panel, the number will increment as the procedures are performed.

8 Select BEGIN.
9 For setups that require an input, adjust the value shown in the display to the measured value and select ENTER VALUE.

10 The setup will automatically advance to the next required value.

\section*{Note}

To cancel the adjustment procedure, select CANCEL STEP. The display will return to the setup number entry.

\section*{11 When finished, select END CAL.}

12 Secure the instrument against calibration.
13 Note the new security code and calibration count in the instrument's maintenance records.

\section*{Chapter 4 Calibration Procedures}

\section*{Aborting a Calibration in Progress}

\section*{Aborting a Calibration in Progress}

Sometimes it may be necessary to abort a calibration after the procedure has already been initiated. You can abort a calibration at any time by turning off the power. When performing a calibration from the remote interface, you can abort a calibration by issuing a remote interface device clear message followed by a \({ }^{\text {RSTS }}\).
The instrument stores calibration constants at the end of each adjustment procedure. If you lose power, or otherwise abort an adjustment in progress, you will only need to perform the interrupted adjustment procedure again.

\section*{Caution}

If you abort a calibration in progress when the instrument is attempting to write new calibration constants to EEPROM, you may lose all calibration constants for the function. Typically, upon re-applying power, the instrument will report error " 705 Calibration Aborted".

\section*{Sequence of Adjustments}

The adjustment sequence shown in the following sections of this chapter is recommended to minimize the number of test equipment set-up and connection changes.

You may perform individual adjustments as necessary. Setups 1 through 7 must be performed in order and must be performed before any other setup procedure.
\begin{tabular}{ll} 
Note & \begin{tabular}{l} 
If you have repaired the output amplifier circuitry (U1903, U1904, and \\
associated components) you should perform the "Output Amplifier \\
Adjustment (Optional)", on page 90 before beginning any other \\
adjustment procedures.
\end{tabular}
\end{tabular}

\section*{Self-Test}

Self-Test is performed as the first step to ensure the instrument is in working order before beginning any additional adjustments.

1 Press on the front panel. Select Perform Cal on the "Test / Cal" menu. Enter setup number " 1 " and select BEGIN.
\begin{tabular}{|l|l|}
\hline Setup & \\
\hline 1 & Performs the Self-test. The Main Output is disabled during test. \\
\hline
\end{tabular}

2 If the instrument fails any self-test, you must repair the instrument before continuing the adjustment procedures.

Chapter 4 Calibration Procedures
Frequency (Internal Timebase) Adjustment

\section*{Frequency (Internal Timebase) Adjustment}

The function generator stores a calibration constant that sets the TCXO to output exactly 10 MHz .

1 Set the frequency counter resolution to better than 0.1 ppm and the input termination to \(50 \Omega\) (if your frequency counter does not have a \(50 \Omega\) input termination, you must provide an external termination). Make the connections shown below.


2 Use a frequency counter to measure the output frequency for each setup in the following table.
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{2}{|l|}{ Nominal Signal } & \\
\hline Setup & Frequency & Amplitude & \\
\hline 2 & \(<10 \mathrm{MHz}\) & 1 Vpp & Output frequency is slightly less than 10 MHz \\
\hline 3 & \(>10 \mathrm{MHz}\) & 1 Vpp & Output frequency is slightly more than 10 MHz \\
\hline 4 & \(\sim 10 \mathrm{MHz}\) & 1 Vpp & Output frequency should be near 10 MHz \\
\hline \(5^{*}\) & 10 MHz & 1 Vpp & Output frequency should be \(10 \mathrm{MHz} \pm 0.5 \mathrm{ppm}\) \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numerical keypad or knob, adjust the displayed frequency at each setup to match the measured frequency. Select ENTER VALUE.

4 After performing setup 5:
a. If your calibration procedures require you to verify the adjustment just made, exit the calibration menu and perform "Internal Timebase Verification", on page 60.
b. If you are making all the adjustments and then verifying the instrument's performance, continue with the next procedure in this chapter.

\section*{Internal ADC Adjustment}

The function generator stores calibration constants related to the gain and offset of the internal ADC. Setup 6 must always be performed before any other adjustments are attempted. The internal ADC is then used as a source for the calibration constants generated in setup 7 .

1 Make the connections as shown below.


2 Set the DMM to display \(51 / 2\) digits and measure the dc value. Record the measurement.

3 Enter the following setup and use the numeric keypad or knob to enter the measured value of the dc source.
\begin{tabular}{|l|l|l|}
\hline & Nominal Signal & \\
\hline Setup & DC level & \\
\hline \(6^{*}\) & \(\sim 1\) Vdc \(\pm 10 \%\) & Calibrates the internal ADC. \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

4 Disconnect all cables from the rear panel Modulation In connector.

\section*{Chapter 4 Calibration Procedures}

\section*{Output Impedance Adjustment}

5 Enter and begin the following setup.
\begin{tabular}{|l|l|}
\hline Setup & \\
\hline \(7^{*}\) & Self-calibration. The Main Output is disabled during test. \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

6 There are no specific operational verification tests for setups 6 and 7 since the constants generated affect almost all behavior of the instrument. Continue with the next adjustment procedure in this chapter.

\section*{Output Impedance Adjustment}

The function generator stores calibration constants for the output impedance. The output impedance constants are generated with and without the distortion filter and using all five attenuator paths.

1 Set the DMM to measure offset-compensated, four-wire Ohms. Set the DMM to use 100 NPLC integration. Make the connections as shown below.


2 Use the DMM to make a resistance measurement at the front panel Output connector for each setup in the following table. The expected measured value is approximately \(50 \Omega\).
\begin{tabular}{|l|l|}
\hline Setup & \\
\hline \(8^{\star}\) & -30 dB range with distortion filter \\
\hline \(9^{\star}\) & -20 dB range with distortion filter \\
\hline \(10^{\star}\) & -10 dB range with distortion filter \\
\hline \(11^{\star}\) & 0 dB range with distortion filter \\
\hline \(12^{\star}\) & +10 dB range with distortion filter \\
\hline \(13^{\star}\) & -30 dB range without distortion filter \\
\hline \(14^{\star}\) & -20 dB range without distortion filter \\
\hline \(15^{\star}\) & -10 dB range without distortion filter \\
\hline \(16^{\star}\) & 0 dB range without distortion filter \\
\hline \(17^{\star}\) & +10 dB range without distortion filter \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed impedance at each setup to match the measured impedance. Select ENTER VALUE.

4 There are no specific operational verification tests for Output Impedance. Continue with the next adjustment procedure in this chapter.

Chapter 4 Calibration Procedures
AC Amplitude (high-impedance) Adjustment

\section*{AC Amplitude (high-impedance) Adjustment}

The function generator stores a calibration constant for each highimpedance attenuator path. The gain coefficient of each path is calculated using two measurements; one with the waveform DAC at the + output and one with waveform DAC at the - output. The setups, therefore, must be performed in pairs.

1 Connect the DMM as shown below.


2 Use the DMM to measure the dc voltage at the front-panel Output connector for each setup in the following table.
\begin{tabular}{|l|c|l|}
\hline & Nominal Signal & \\
\hline Setup & DC level & \\
\hline 18 & +0.015 V & Output of -30 dB range \\
\hline \(19^{*}\) & -0.015 V & Output of -30 dB range \\
\hline 20 & +0.05 V & Output of -20 dB range \\
\hline \(21^{*}\) & -0.05 V & Output of -20 dB range \\
\hline 22 & +0.15 V & Output of -10 dB range \\
\hline \(23^{*}\) & -0.15 V & Output of -10 dB range \\
\hline 24 & +0.50 V & Output of 0 dB range \\
\hline \(25^{*}\) & -0.50 V & Output of 0 dB range \\
\hline 26 & +0.15 V & Output of -10 dB range (Amplifier In ) \\
\hline \(27^{*}\) & -0.15 V & Output of -10 dB range (Amplifier In ) \\
\hline 28 & +0.50 V & Output of 0 dB range (Amplifier In\()\) \\
\hline \(29^{*}\) & -0.50 V & Output of 0 dB range (Amplifier In ) \\
\hline 30 & +1.5 V & Output of +10 dB range (Amplifier In ) \\
\hline \(31^{*}\) & -1.5 V & Output of +10 dB range (Amplifier In ) \\
\hline 32 & +5 V & Output of +20 dB range (Amplifier In ) \\
\hline \(33^{*}\) & -5 V & Output of +20 dB range (Amplifier In ) \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed voltage at each setup to match the measured voltage. Select ENTER VALUE. (Entered values are rounded to the nearest \(100 \mu \mathrm{~V}\).)

4 After performing setup 33:
a. If your calibration procedures require you to verify the adjustment just made, exit the calibration menu and perform "AC Amplitude (highimpedance) Verification", on page 61.
b. If you are making all the adjustments and then verifying the instrument's performance, continue with the next procedure in this chapter.

Chapter 4 Calibration Procedures
Low Frequency Flatness Adjustment

\section*{Low Frequency Flatness Adjustment}

The Low Frequency Flatness adjustment calculates the flatness response of 3 attenuator paths with the Elliptical filter and 2 attenuator paths with the Linear Phase filter.

1 Set the DMM to measure Vrms. Make the connections shown on page 78.
2 Use the DMM to measure the output voltage for each of the setups in the table below.
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{2}{|l|}{ Nominal Signal } & \\
\hline Setup & Frequency & Amplitude & \\
\hline \(34^{\star}\) & 1 kHz & 0.56 Vrms & Flatness for 0 dB , Elliptical Filter \\
\hline \(35^{\star}\) & 100 kHz & 0.56 Vrms & Flatness for 0 dB , Elliptical Filter \\
\hline \(36^{\star}\) & 1 kHz & 0.56 Vrms & Flatness for 0 dB , Linear Phase Filter \\
\hline \(37^{\star}\) & 100 kHz & 0.56 Vrms & Flatness for 0 dB , Linear Phase Filter \\
\hline \(38^{\star}\) & 1 kHz & 1.7 Vrms & Flatness for +10 dB, Elliptical Filter \\
\hline \(39^{\star}\) & 100 kHz & 1.7 Vrms & Flatness for +10 dB, Elliptical Filter \\
\hline \(40^{\star}\) & 1 kHz & 5.6 Vrms & Flatness for +20 dB, Elliptical Filter \\
\hline \(41^{\star}\) & 100 kHz & 5.6 Vrms & Flatness for +20 dB, Elliptical Filter \\
\hline \(42^{\star}\) & 1 kHz & 5.6 Vrms & Flatness for +20 dB, Linear Phase Filter \\
\hline \(43^{\star}\) & 100 kHz & 5.6 Vrms & Flatness for +20 dB, Linear Phase Filter \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed voltage at each setup to match the measured voltage. Select ENTER VALUE.

4 After performing setup 43:
a. If your calibration procedures require you to verify the adjustment just made, exit the calibration menu and perform "Low Frequency Flatness Verification", on page 62.
b. If you are making all the adjustments and then verifying the instrument's performance, continue with the next procedure in this chapter.

\section*{0 dB Range Flatness Adjustments}

1 Connect the power meter as shown on page 83.
2 Use the power meter to measure the output amplitude for each of the setups in the table below.

Note
Setup 44 establishes the power meter reference for all the remaining setups in this table. You must always perform setup 44 before any of the following setups.
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{3}{|c|}{ Nominal Signal } & \\
\hline Setup & Frequency & \multicolumn{2}{|c|}{ Amplitude } & \\
\hline \(44^{\star}\) & 100 kHz & 0.28 Vrms & 2 dBm & Power Meter Reference for 0 dB Range \\
\hline \(45^{\star}\) & 200 kHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(46^{\star}\) & 500 kHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB , Elliptical Filter \\
\hline \(47^{\star}\) & 1.5 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB , Elliptical Filter \\
\hline \(48^{\star}\) & 5 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(49^{\star}\) & 10.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(50^{\star}\) & 25.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(51^{\star}\) & 40.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(52^{\star}\) & 50.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(53^{\star}\) & 60.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(54^{\star}\) & 65.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(55^{\star}\) & 70.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(56^{\star}\) & 75.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline \(57^{\star}\) & 79.9 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Elliptical Filter \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

Continued on next page...

Chapter 4 Calibration Procedures

\section*{0 dB Range Flatness Adjustments}
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{3}{|c|}{ Nominal Signal } & \\
\hline Setup & Frequency & \multicolumn{2}{|c|}{ Amplitude } & \\
\hline \(58^{\star}\) & 200 kHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Linear Phase \\
\hline \(59^{\star}\) & 500 kHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Linear Phase \\
\hline \(60^{\star}\) & 1.5 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Linear Phase \\
\hline \(61^{*}\) & 5 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Linear Phase \\
\hline \(62^{\star}\) & 10.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Linear Phase \\
\hline \(63^{\star}\) & 25.1 MHz & 0.28 Vrms & 2 dBm & Flatness for 0 dB, Linear Phase \\
\hline 64 & 25.1 MHz & 0.15 Vrms & -4 dBm & Flatness reference measurement \\
\hline \(65^{\star}\) & 79.9 MHz & \(<0.15 \mathrm{Vrms}\) & -4 dBm & Flatness high frequency measurement \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed amplitude at each setup to match the measured amplitude (in dBm ).
Select ENTER VALUE.
4 After performing setup 65:
a. If your calibration procedures require you to verify the adjustment just made, exit the calibration menu and perform " 0 dB Range Flatness Verification", on page 63.
b. If you are making all the adjustments and then verifying the instrument's performance, continue with the next procedure in this chapter.

\section*{+10 dB Range Flatness Adjustments} path's values.

1 Connect the power meter as shown below.


2 Use the power meter to measure the output amplitude for each of the setups in the table on the next page.

Note
Setup 66 establishes the power meter reference for all the remaining setups in this table. You must always perform setup 66 before any of the following setups.

Chapter 4 Calibration Procedures +10 dB Range Flatness Adjustments
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Nominal Signal} & \\
\hline Setup & Frequency & Amp & & \\
\hline 66* & 100 kHz & 0.9 Vrms & 12 dBm & Power Meter Reference for +10 dB Range \\
\hline 67* & 200 kHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 68* & 500 kHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 69* & 1.5 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 70* & 5 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 71* & 10.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 72* & 25.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 73* & 40.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 74* & 50.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 75* & 60.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 76* & 65.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 77* & 70.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 78* & 75.1 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline 79* & 79.9 MHz & 0.9 Vrms & 12 dBm & Flatness for +10 dB , Elliptical Filter \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed amplitude at each setup to match the measured amplitude (in dBm ).
Select ENTER VALUE.
4 After performing setup 79:
a. If your calibration procedures require you to verify the adjustment just made, exit the calibration menu and perform " +10 dB Range Flatness Verification", on page 65.
b. If you are making all the adjustments and then verifying the instrument's performance, continue with the next procedure in this chapter.

\section*{+20 dB Range Flatness Adjustment}

Caution Most power meters will require an attenuator ( -20 dB ) or special power head to measure the +20 dB output.

Be sure to correct the measurements for the specifications of the attenuator you use. For example, if the nominal attenuator value is -20 dB at the specified frequency, you must add 20 dB to the power meter reading before entering the value.

1 Make the connections as shown below.


2 Use the power meter to measure the output amplitude for each of the setups in the table on the next page.

\section*{Note}

Setup 80 establishes the power meter reference for all the remaining setups in this table. You must always perform setup 80 before any of the following setups.
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{3}{|c|}{ Nominal Signal } & \\
\hline Setup & Frequency & \multicolumn{2}{|c|}{ Amplitude } & \\
\hline \(80^{*}\) & 100 kHz & 2.8 Vrms & 22 dBm & Power Meter Reference \\
\hline \(81^{*}\) & 200 kHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline \(82^{*}\) & 500 kHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline \(83^{*}\) & 1.5 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

Continued on next page...

Chapter 4 Calibration Procedures +20 dB Range Flatness Adjustment
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Nominal Signal} & \\
\hline Setup & Frequency & Ampl & & \\
\hline 84* & 5 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 85* & 10.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 86* & 25.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 87* & 40.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 88* & 50.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 89* & 60.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 90* & 65.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 91* & 70.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 92* & 75.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 93* & 79.9 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Elliptical Filter \\
\hline 94* & 200 kHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Linear Phase Filter \\
\hline 95* & 500 kHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Linear Phase Filter \\
\hline 96* & 1.5 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Linear Phase Filter \\
\hline 97* & 5 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Linear Phase Filter \\
\hline 98* & 10.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Linear Phase Filter \\
\hline 99* & 25.1 MHz & 2.8 Vrms & 22 dBm & Flatness for +20 dB , Linear Phase Filter \\
\hline 100 & 60.1 MHz & 3.4 Vrms & 24 dBm & Flatness reference measurement \\
\hline 101* & 79.9 MHz & \(\sim 3.2 \mathrm{Vrms}\) & 23 dBm & Flatness high frequency measurement \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed amplitude at each setup to match the measured amplitude (in dBm ).
Select ENTER VALUE.
4 After performing setup 101:
a. If your calibration procedures require you to verify the adjustment just made, exit the calibration menu and perform " +20 dB Range Flatness Verification", on page 66.
b. If you are making all the adjustments and then verifying the instrument's performance, continue with the next procedure in this chapter.

\section*{Pulse Width (Trailing Edge Delay) Adjustment}

The function generator stores calibration constants used to set the trailing edge delay (see the discussion on page 110). These setups place the instrument in pulse mode (at 8 MHz ). Setup 102 must be performed immediately prior to setup 103.

1 Set the oscilloscope to use averaging to determine the pulse width. Set the oscilloscope to \(50 \Omega\) input termination (if your oscilloscope does not have a \(50 \Omega\) input termination, you must provide an external termination). Make the connections as shown below.


2 Use the oscilloscope to measure the pulse width of signal at the frontpanel Output terminal for each of the following setups.
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{2}{|c|}{ Nominal Signal } & \multicolumn{2}{l|}{ Measurement: Pulse Width(s) } \\
\hline Setup & Freq & Amplitude & Pulse Width & \\
\hline 102 & 8 MHz & 1 Vpp & 30 ns & Narrow pulse width \\
\hline \(103^{*}\) & 8 MHz & 1 Vpp & 42 ns & Wide pulse width \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed pulse width at each setup to match the measured pulse width. Select ENTER VALUE.

4 There are no specific operational verification tests for the Pulse Width Adjustment. Continue with the next adjustment procedure in this chapter.

Chapter 4 Calibration Procedures
Pulse Edge Time Adjustment

\section*{Pulse Edge Time Adjustment}

The function generator stores calibration constants used to calculate the slope and offset of the edge time DAC outputs. These setups output 100 Hz pulses with 5 ms pulse widths. The setups, following the first three, must be done in pairs (i.e., 107 immediately before 108).

1 Set the oscilloscope to \(50 \Omega\) input termination (if your oscilloscope does not have a \(50 \Omega\) input termination, you must provide an external termination). Measure the rise time from the \(10 \%\) to \(90 \%\) points on the waveform. Make the connections shown on page 87.

2 Use an oscilloscope to measure the rise time of the output signal at the front-panel Output connector for each setup in the following table.
\begin{tabular}{|l|l|c|c|l|}
\hline & \multicolumn{2}{|c|}{ Nominal Signal } & \multicolumn{2}{|c|}{} \\
\hline Setup & Freq & Amplitude & Rise Time \({ }^{1}\) & \\
\hline 104 & 100 Hz & 1 Vpp & 3.2 ns & Fastest transition range 0 \\
\hline \(105^{*}\) & 100 Hz & 1 Vpp & 4.5 ns & Mid transition range 0 \\
\hline \(106^{*}\) & 100 Hz & 1 Vpp & 64 ns & Slowest transition range 0 \\
\hline 107 & 100 Hz & 1 Vpp & 8 ns & Fastest transition range 1 \\
\hline \(108^{*}\) & 100 Hz & 1 Vpp & 241 ns & Slowest transition range 1 \\
\hline 109 & 100 Hz & 1 Vpp & 161 ns & Fastest transition range 2 \\
\hline \(110^{*}\) & 100 Hz & 1 Vpp & \(4.9 \mu \mathrm{~s}\) & Slowest transition range 2 \\
\hline 111 & 100 Hz & 1 Vpp & \(2.6 \mu \mathrm{~s}\) & Fastest transition range 3 \\
\hline \(112^{*}\) & 100 Hz & 1 Vpp & \(82 \mu \mathrm{~s}\) & Slowest transition range 3 \\
\hline 113 & 100 Hz & 1 Vpp & \(57 \mu \mathrm{~s}\) & Fastest transition range 4 \\
\hline \(114^{*}\) & 100 Hz & 1 Vpp & 1.75 ms & Slowest transition range 4 \\
\hline
\end{tabular}
* Constants are stored after completing this setup.
\({ }^{1}\) Rise time measured can vary greatly from the nominal values shown.
3 Using the numeric keypad or knob, adjust the displayed rise time ( \(10 \%\) to \(90 \%\) ) at each setup to match the measured rise time.
Select ENTER VALUE.
4 There are no specific operational verification tests for the Pulse Edge Time Adjustment. Continue with the next adjustment procedure in this chapter.

\section*{Duty Cycle Adjustment}

The function generator stores a calibration constant used to calculate the square wave duty cycle. This setup outputs a 25.1 MHz square wave. The output frequency in this procedure is chosen to avoid artifacts of DDS signal generation and internal clock frequencies.

The "Internal ADC Adjustment", on page 75 must be completed before doing this procedure.

1 Set the oscilloscope to \(50 \Omega\) input termination (if your oscilloscope does not have a \(50 \Omega\) input termination, you must provide an external termination). Make the connections shown on page 87.

2 Use an oscilloscope to measure the duty cycle of the signal at the frontpanel Output connector.
\begin{tabular}{|l|l|c|c|l|}
\hline & \multicolumn{3}{|c|}{ Nominal Signal } & \\
\hline Setup & Freq & Amplitude & Duty Cycle & \\
\hline \(115^{\star}\) & 25.1 MHz & 1 Vpp & \(50 \%\) & Enter measured duty cycle \\
\hline
\end{tabular}
* Constants are stored after completing this setup.

3 Using the numeric keypad or knob, adjust the displayed duty cycle at each setup to match the measured duty cycle. Select ENTER VALUE.

4 There are no specific operational verification tests for the Duty Cycle Adjustment.

5 Secure the instrument against further adjustments as described on page 43 .

You have now completed the recommended adjustment procedures. You should now verify the output specifications of the instrument using the "Performance Verification Tests", on page 55.

\section*{Chapter 4 Calibration Procedures}

\section*{Output Amplifier Adjustment (Optional)}

\section*{Output Amplifier Adjustment (Optional)}

This adjustment should only be performed if repairs have been made the output amplifier circuitry (U1903, U1904, and associated components). This adjustment is performed at the factory and re-adjustment is not needed or recommended.

\section*{Note \\ You must perform a complete calibration of the instrument following this adjustment.}

1 Disconnect the power cord and all input connections.
2 Remove the instrument cover. See "Disassembly", on page 140.
3 Attach the power cord. Press and hold the " 1 " button and then turn on the instrument. Be careful not to touch the power line connections.

4 The display shows a bar graph.
5 Use a long, small, flat-bladed screwdriver to adjust R1959 to minimize the length of the bar in the display. The adjustment tool can reach R1959 through the slot in the sheet metal as shown.


6 Turn off the instrument and remove the power cord.
7 Re-assemble the instrument.
8 Perform the Adjustment and Verification procedures.

\section*{Calibration Errors}

The following errors are failures that may occur during a calibration. System error messages are described in chapter 5 of the Agilent 33250A User's Guide. Self-test error messages are described in this manual beginning on page 137.

Calibration error; security defeated by hardware jumper If you short the calibration secure jumper while turning ON the instrument, this error will occur indicating the security password has been overwritten.

Calibration error; calibration memory is secured
Calibration error; calibration memory is secured
Calibration error; secure code provided was invalid
Calibration error; calibration aborted
Calibration error; value out of range
You have typed in a value that was unexpected by the calibration firmware. For example, if a number is expected such a 50.XX ohms, and you enter 10 ohms , that number is outside the expected range of valid inputs.

Calibration error; value out of range Occurs during the ADC Adjustment, setup 6, if the 1 Volt input voltage is too high.

Calibration error; set up is invalid
You have selected an invalid calibration setup number.
Calibration error; set up is out of order
Certain calibration steps require a specific beginning and ending sequence. You may not enter into the middle of a sequence of calibration steps.

\section*{Theory of Operation}

This chapter provides descriptions of the circuitry shown on the schematics in chapter 9.
- Block Diagram, on page 95
- Main Power Supply, on page 97
- On-Board Power Supplies, on page 98
- Waveform DAC and Filters, on page 100
- Digital Waveform, Pulse, and Sync, on page 101
- Digital Waveform Translator, on page 104
- Amplitude Multiplier, on page 106
- Main Output Circuitry, on page 107
- System ADC, on page 110
- System DAC, on page 112
- Synthesis IC, on page 113
- Timebase, on page 115
- Phase Locked Loops, on page 116
- Clock Divider, on page 118
- Trigger and Delay, on page 120
- Waveform RAM, on page 122
- Synchronous Multiplexer, on page 123
- Main Processor, on page 124
- Main Gate Array, on page 125
- DSP and Gateway, on page 126
- Earth-Referenced Logic, on page 126
- Front Panel, on page 127

\section*{Block Diagram}

A block diagram is shown on the next page. The function generator's circuits may be divided into three main categories: power supplies, analog circuits, and digital circuits. Each portion of the block diagram is described in the following sections.

The line input voltage is filtered, and then applied to the main power supply. The main power supply provides all power to the instrument. Secondary power supplies are contained on the main circuit board. The secondary supplies control the fan, create the -2.1 V and +3.3 V voltages, and provide the isolated +5 V supply.

The analog circuitry begins at the Waveform DAC and continues to the main output. Sine, ramp, noise, and arbitrary waveforms pass directly from the Waveform DAC to the main output circuitry. Square waves and pulses are formed in the digital waveform and variable rate edge and level translation circuits.

The digital circuitry contains all the waveform generation circuitry and waveform memory. The main CPU and communications CPU (outguard) are also included.

\section*{Conventions Used on Schematics and in this Discussion}

Major signal and control lines are marked with a name in uppercase. If the name is followed by an * (for example, TRIG_SYNC*), the line is inverted logic. If the name is followed by a lowercase \(\mathbf{e}\), (for example, TRIGe), the line is the ECL-level version of a TLL or CMOS signal.



\section*{Power Supplies}

The line input voltage is filtered, and then applied to the main power supply. The main power supply provides all power to the instrument. Secondary power supplies are contained on the main circuit board. The secondary supplies control the fan, create the -2.1 V and +3.3 V voltages, and provide the isolated +5 V supply.

\section*{Main Power Supply}

The main power supply is a switching supply. No schematic is given for this supply since it should be replaced as a unit. It features a universal input, eliminating the need to set power line voltage or frequency.

The main supply provides the following voltages to the main board:
- +5 V (for logic and analog circuitry)
- \(+16 \mathrm{~V},-16 \mathrm{~V}\) (for analog circuitry)
- -5.2 V (for ECL logic and analog circuitry)
- +12 V isolated (for fan and earth-referenced logic)
- +12 V standby (for power switch and over-temperature shutdown circuitry)

The main supply uses an electronic power switch, controlled by logic on the main board, to turn the supplies on or off. The +12 V standby power is always available when line power is applied. All the power supply outputs can be checked on the main board.

\section*{On-Board Power Supplies}

\section*{On-Board Power Supplies}

See "A1 Power Supply Schematic" on page 204.
The on-board power supply controls the on/off state of the power supply and conditions the main supplies for use by the analog and digital circuits. Over-temperature protection is also provided.
The main supply provides a +12 V standby power supply that is used by the power on/off circuitry. The electronic power switch is controlled by the PWR_SWITCH* line. This line is grounded when the front-panel power switch is pushed and turns on Q2004 through R2026.
Pressing the power switch turns on Q2004, and C2043 and C2047 begin to charge up. Depending upon the state of relay K2001, R2025 will be in parallel with either R2023 or R2024, so one of the capacitors will charge much faster than the other. The charged capacitor turns on either Q2006 or Q2008 and energizes the coil of K2001, changing the relay to the opposite state. Repeatedly pushing the power switch toggles the relay from one state to the other. In the ON state, PWR_ON* is grounded through Q2009, turning on the main power supply.

Q2009 can turn off the main supplies if an over-temperature condition is sensed by U2006, which is powered by the +12 V standby power supply. U2006 has two trip points for over-temperature. The first trip point is set at approximately \(85^{\circ} \mathrm{C}\) and is asserted by OUT 1 . This is a warning to the microprocessor and this condition can be read via GPIB in the status byte. The second trip point is set at approximately \(90^{\circ} \mathrm{C}\) and is an actual over-temperature condition that asserts OUT 2. This turns off Q2009 and shuts off the main supplies.

The actual temperature sensed by U2006 can be read by the microprocessor through the MEAS_TEMP signal. This reading is used during the calibration and adjustment process.

Secondary logic supplies are derived from the main power supply's +5 V (VCC). Switching regulator U2004 provides the +3.3 V supply (VDD) for the synthesis IC and waveform memory. U2005 provides the -2.1 V ECL termination supply (VTT).

The +12 V earth-referenced supply, \(+12 \mathrm{~V} \_\)ER, is reduced to +5 V by voltage regulator U2003. This is the earth-referenced logic power supply (+5_ER).

The variable-speed fan is driven by a temperature-controlled switching regulator which is powered by +12V_ER. Comparator U2002-A is configured as an oscillator whose output (at C2013) is a triangle wave. Thermistor R2016 senses the incoming air temperature and U2001-A converts it to a voltage. U2002-B compares this voltage to the triangle wave and outputs a square wave whose duty cycle varies with temperature. The square wave is buffered by U104-C and Q2001 and then filtered by L2003 and C2004 to create a dc voltage that varies with the temperature and is used to power the fan. Below \(30^{\circ} \mathrm{C}\), the fan voltage is set to approximately 7 volts by R2003 and R2015 (since CR2004 is reversebiased). Above \(50^{\circ} \mathrm{C}\), U2001-A's output voltage is below the minimum voltage of the triangle wave, keeping Q2001 on constantly and applying full voltage to the fan.

The PWR_FAIL* line is provided by the main supply to indicate brownout or sagging line input condition. The microprocessor uses this line to initiate saving the current state of the instrument in non-volatile memory.

\section*{Analog Circuitry}

The analog circuitry begins at the Waveform DAC and continues to the main output.

Sine, ramp, noise, and arbitrary waveforms pass directly from the Waveform DAC to the main output circuitry. Square waves and pulses are formed in the digital waveform and variable-rate level translation circuits.

\section*{Waveform DAC and Filters}

See "A1 Waveform DAC, Filters, and Comparator Schematic" on page 201.
The 12 -bit waveform DAC, U1701, is loaded with data by the Synchronous Multiplexer of the digital circuitry. The most significant bit of this data is inverted by U1401-B to convert the 2's complement value in memory to the offset-binary representation required by the DAC. Data is clocked at a 200 MHz rate through differential clock inputs WFDAC_CLK \(\pm\). The waveform DAC clock is out of phase with the LOGIC_CLK to provide ample setup and hold times for the data.

The DAC output, at pins 17 and 18 , is centered at -250 mV and ranges from 0 mV to -500 mV full scale.

Latching relay K1701 connects the DAC output to one of two filters:
- A \(9^{\text {th }}\) order elliptical filter with a cutoff frequency of 85 MHz . This filter includes \(\sin (x) / x\) correction. It is used for continuous sine and square waves.
- A \(7^{\text {th }}\) order linear-phase filter with a cutoff frequency of 50 MHz . It is used for ramp, noise, and arbitrary waveforms. It is also used for sine and square waves in burst mode.

Relay K1701 is driven by the SET_STEP and SET_SINE lines from U306.
The output of the selected filter is applied to amplifier U1703. U1703 has a gain of 4.3 and the output is level shifted to center at ground potential. The output ranges from -1.1 V to +1.1 V . U1702 uses VREF ( +2.5 V ) to provide an output level appropriate to shift the waveform DAC output to center around ground.

U1704 is a comparator driven by the \(2.2 \mathrm{Vp}-\mathrm{p}\) signal from U1703 to generate square waves. System DAC signal, V_THRESH, sets the duty cycle of the square wave. The square wave output, SQUARE_DWF, is sent to the SYNC selector (U1502) and the AND gate U1507-B where, if it is enabled by SQUARE_DWF_EN being high, it is passed to the Digital Waveform Translator.

\section*{Digital Waveform, Pulse, and Sync}

See "A1 Digital Waveform and Sync Schematic" on page 199.
There are three timing parameters for pulse waveforms: period, width, and leading/trailing edge time. At the beginning of each period, a short pulse on LE clocks a " 0 " into flip-flop U1505-B to initiate the leading edge on PULSE_DWF. Later, a short pulse on TE triggers a variabledelay circuit consisting of U1505-A,U1506-A, U1507-D and associated components. The output of the delay circuit, DTE, sets U1505-B to cause the pulse's trailing edge.
PULSE_DWF is the digital version of the pulse waveform. If U1507-A is enabled (PULSE_DWF_EN is high), the signal is passed to the Digital Waveform Translator, where leading- and trailing-edge times are controlled.


\section*{Chapter 5 Theory of Operation Digital Waveform, Pulse, and Sync}

LE and TE are outputs from register U1504 which is clocked differentially by WFDAC_CLK \(\pm\). The pulse period always consists of an integral number of clocks; the clock frequency is controlled to achieve fine period resolution. The pulse itself consists of a number of clocks plus the delay provided by the delay circuit; fine control of the pulse width is achieved by varying the delay via a control voltage, V_TEDLY.


Before the TE pulse, U1505-A holds integrating capacitor C1511 at an ECL high logic level (approximately -0.8 V ). When the TE pulse occur, the flip-flop's output goes low, but being an open-emitter output, it cannot sink current from the capacitor. Instead, the capacitor begins charging in a negative direction through R1549. U1506-A compares the voltage on C1511 to a threshold determined by V_TEDLY. When the capacitor's voltage crosses the threshold, the comparator's inverting output goes high and sets U1505-A back to its original state. This rapidly charges C1511 back to its original voltage and circuit is ready to be triggered by the next TE pulse. The brief pulse that results at U1506-A's output while the capacitor voltage is below the threshold voltage is ORed with the global reset signal, INITe, in U1507-D. The result is DTE, which forces PULSE_DWF back to the low state to end the pulse.

U1508-D sets the current in Q1501 (from 0 to \(60 \mu \mathrm{~A}\) ) according to the voltage difference between V_TEDLY and VREF (as buffered by U1508-A). This current is converted to U1506-A's threshold voltage (approximately -0.8 V to -1.4 V ) by U1508-B.
Multiplexer U1502 selects which signal is put out at the SYNC connector, depending on the states of SYNC_CTL0 and SYNC_CTL1 from the Synthesis IC. The SYNC signal may be a constant low, a constant high, the output of square wave comparator U1704-A, or a signal, DSYNC, generated within the Synthesis IC and coming by way of the Synchronous Multiplexer and U1504. The output of U1502 (SYNCe) is buffered and translated to TTL levels by U1503.

\section*{Digital Waveform Translator}

See "A1 Variable-Edge Level Translation Schematic" on page 200.
Digital Waveform Translator converts the square or pulse waveform's (DWFe) ECL levels to the \(\pm 1 \mathrm{~V}\) levels required by Amplitude Multiplier. It also sets the rise and fall time of the square wave or pulse.
The input signal, DWFe, is amplified and level translated to \(\pm 640 \mathrm{mV}\) by clamping amplifier U1602. Clamping levels are set by R1613, R1616, R1628, and R1631. U1602's output drives a diode switch (CR1601 and CR1602) that steers currents from Q1606 and Q1608 into one of five integrating capacitors (C1609 through C1613). The charge current is set by U1601, Q1601, Q1602, and associated components, according to the value of V_LEDGE ( 0 to +2.5 V ). Similarly, the discharge current is set by U1603, Q1607, Q1608, and associated components, according to the value of V_TEDGE ( 0 to -2.5 V ).


The voltage on the integrating capacitor is amplified and buffered by another clamp amplifier, U1605, to \(\pm 1.1 \mathrm{~V}\) as required by the Amplitude Multiplier. U1605's clamp levels are set by U1604 and associated components.

Edge speed range is set by TR_RNG(4:1) which control transistors Q1603 through Q1606. If a transistor is off, the associated integrating capacitor (C1610 through C1613) floats and is effectively out of the circuit. If a transistor is on, however, one end of the its capacitor is grounded and capacitor is switched into the circuit.

U 1602 converts the -0.8 V to -1.6 V to \(\pm 0.64 \mathrm{~V}\) levels. The upper clamp voltage of -1.0 V is obtained from resistive divider R1613 and R1616 and the VEE ( -5.2 V ) supply. The lower clamp level of -1.6 V is obtained from resistive divider R1628 and R1631 and VEE.
The Schottky-diode bridge (CR1601 and CR1602) switches one of two current sources into the capacitive charge circuit. The current source used is set by the +0.64 V to -0.64 V input from level shifter U1602.
The two current sources are similar. They are controlled by the System DAC signals V_LEDGE and V_TEDGE.


The V_LEDGE input varies from +65 mV to +1.95 V . This input range is applied through amplifier U1601-B to Q1602 where it varies the current through R1614 from 0.25 mA to 7.5 mA .

This varying current is applied to a current mirror consisting of U1601-A and Q1601. The Schottky-diode bridge the steers this current in to the integration capacitor.
There are five integration capacitors: C1609 through C1613. C1609 is always in the circuit ( \(<10 \mathrm{~ns}\) ) and the other four are switched in response to signals from the Main Gate Array (TR_RNG[4:1]).
The value on the integration capacitor is amplified to +1.1 V to -1.1 V levels by clamp amplifier U1605. V_REF is used by U1604 to set the upper and lower clamping levels.

Chapter 5 Theory of Operation
Amplitude Multiplier

\section*{Amplitude Multiplier}

See "A1 Multiplier Schematic" on page 202.
Latching relay K1801 selects either the analog waveform, AWF, or the digital waveform, DWF, for application to multiplier U1801. K1801 is controlled by SET_AWF and SET_DWF from U306.
The amplitude multiplier provides approximately 10 dB of fine control to the instrument's output amplitude, interpolating between attenuator steps. The multiplier also performs AM modulation.

U1801's gain is determined by the differential voltage present at its " X " input. This voltage, V_GAIN \(\pm\), is generated in the Modulation circuitry and typically ranges from 230 mV to 750 mV .

The waveform signal, as selected by K1801, is applied to U1801's "Y1" input and nominally ranges from -1 V to +1 V . The " Y 2 " input is driven by V_NULL from the System DAC. V_NULL is set to correct for any offset voltage present in the "Y1" input to ensure the multiplier's output offset remains constant as the gain voltage is changed.
The output of U1801 is buffered by U1802 to become the instrument's 0 dB output (BUF_OUT).

\section*{Main Output Circuitry}

See "A1 Main Output Circuitry Schematic" on page 203.
The main output circuitry attenuates or amplifies the waveform to its final amplitude level and adds any dc offset required. The output is also protected against harmful combinations of load impedance and output voltage.


R1915, R1917, and R1918 form a -10 dB attenuator that is switched by K1901. Similarly, R1916, R1919, R1920, and R1921 form a 20 dB attenuator that is switched by K1902. U1903, U1904, and the associated components form a 20 dB amplifier that is switched by K1903. K1901 through K1903 are latching relays controlled by signals from U305.

Chapter 5 Theory of Operation

\section*{Main Output Circuitry}

Attenuators and/or the amplifier are switched in to set the output amplitude range according to the following table:
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Offset < 1 V } & \multicolumn{3}{c|}{ Offset > 1 V } \\
\hline \begin{tabular}{l} 
Amplitude Range \\
(V \(\mathrm{pp}^{\text {into } 50 \Omega \text { ) }}\)
\end{tabular} & \(\mathbf{- 1 0 ~ d B ~}\) & \(\mathbf{- 2 0 ~ d B}\) & Amp & \(\mathbf{- 1 0 ~ d B}\) & \(\mathbf{- 2 0 ~ d B}\) & Amp \\
\hline\(<31.6 \mathrm{mV}\) & In & In & Out & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline 30 mV to 100 mV & Out & In & Out & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline 96 mV to 316 mV & In & Out & Out & In & In & In \\
\hline 300 mV to 1 V & Out & Out & Out & Out & In & In \\
\hline 0.96 V to 3.16 V & In & Out & In & In & Out & In \\
\hline 3 V to 10 V & Out & Out & In & Out & Out & In \\
\hline
\end{tabular}

Note that adjacent ranges overlap, so relay chatter is eliminated when small amplitude changes are made near range edges.

U1901, U1902, and associated components form a high-current amplifier that injects DC Offset into the signal path through the parallel combination of R1912, R1913, and R1914. Injecting the offset after the attenuators allows small signals to be offset by relatively high dc voltages. The impedance of the system up to the offset injection point is \(62.5 \Omega\), but the parallel combination of R1912 through R1914 (260 \()\) lowers the impedance to \(50 \Omega\). V_OFFSET from the System DAC ( \(\pm 2.5 \mathrm{~V}\) range) is amplified by 5.2 (to \(\pm 13 \mathrm{~V}\) at U1902's output), but is then attenuated by R1912 through R1914. The range of offset available from this circuit is, therefore, \(\pm 1.2 \mathrm{~V}\) into \(50 \Omega\).

When the peak ac voltage or dc offset of the signal exceeds 1 V , the output amplifier consisting of U1903, U1904, and associated components is switched in. U1904 is a hybrid circuit capable of driving \(10 \mathrm{~V}_{\mathrm{pp}}\) signals into \(50 \Omega\) at 80 MHz . U1903 is a "servo" amplifier that improves U1904's accuracy at frequencies below 1 MHz . R1959 must be adjusted to match U1903's gain to that of U1904. In a special adjustment mode (described on page 90), the peak-to-peak voltage of MEAS_OA_ADJ is measured by the Modulation A/D and displayed as a bar on the display. R1959 is then set to minimize the width of the bar.

Non-latching relays K1904 and K1905 switch a \(100-\mathrm{MHz}, 5^{\text {th }}\)-order, low-pass filter (L1907 through L1909 and C1923 through C1926) into the signal path to reduce high-frequency distortion on continuous sine waves. If the instrument is off, if the output has been disabled, or if the output protection circuitry has been activated, the coils of both relays are de-energized and the main output is disconnected from the rest of the instrument.

There are two separate output protection circuits. U1905 and U1906 (configured as comparators) monitor U1904's output voltage and current, and assert OUT_FAULT* (low) if potentially harmful conditions exist. When the output amplifier is switched out, dual comparator U1907 monitors the output voltage and asserts OUT_FAULT* if it exceeds \(\pm 3.5 \mathrm{~V}\). Once OUT_FAULT* is asserted, the condition is latched in the Main Gate Array, and relays K1904 and K1905 are de-energized. User intervention is required to re-enable the output.

\section*{System ADC}

See "A1 Modulation Schematic" on page 190.
Modulation by an external source, both AM and FM, is performed digitally by sampling the external input at the modulation BNC, adjusting the data to match the current modulation specification (deviation in FM, depth in AM). The sampled data are sent to the DSP which applies the resulting data to the waveform generation hardware. The sample rate is 468.75 kHz . All modulation processes in the 33250A are DC-coupled, and can follow DC changes in the external modulation signal.

Modulation by an internal source is similar, except that the modulation waveform is stored in the DSP memory and "played" back at the frequency specified by the current instrument setup. The sample rate for internal modulation is the same as for external modulation, 468.75 kHz .

In Amplitude Modulation, the modulation data are applied to the amplitude control DACs, which control the amplitude multiplier and thereby, the amplitude of the carrier waveform. When amplitude modulation is enabled in the 33250A, the carrier waveform amplitude is reduced to \(50 \%\) of its unmodulated value, and the modulation signal then may vary its amplitude up to the full nominal setting (or above, if greater than \(100 \%\) modulation is specified).
In Frequency Modulation, the modulation data are applied to the Phase Increment Register (PIR) of the main DDS waveform synthesizer to vary the frequency of the carrier waveform. The amount of frequency deviation depends upon the amplitude of the modulating signal and the current instrument setting for deviation.

Modulation circuitry consists of an input multiplexer, U603, an antialias filter, U604, an analog-to-digital converter (ADC), U606, and a digital-to-analog converter (ADC), U607. There is also a voltage reference, U601, that is used by the ADC and other circuits in the system. In addition to modulation, the ADC is used for calibration and self-test.

U603 is the final stage of a multiplexer used to select the ADC input source. The rear panel modulation input is applied directly to one of the multiplexer inputs for the \(\pm 1 \mathrm{~V}\) input range, and through divider R618 and R620 for the \(\pm 5 \mathrm{~V}\) input range. Other U603 inputs include ground, +1.25 V (VREF_d2), MEAS_OA_ADJ from U1903, and three MEAS lines, each of which are multiplexed signals from the first stage multiplexers U706, U707, and U708. The multiplexer is controlled by the MSEL lines from U308.

U603's output is first buffered by U604-B and then applied to a \(3^{\text {rd }}\)-order, low-pass filter. U604-A and associated components form a \(2^{\text {nd }}\)-order, Gaussian, low-pass filter at 720 kHz . R613 and C620 form an additional 1-pole filter at 900 kHz . Together, the first two filter sections produce a frequency response that is flat to 200 kHz . U604-A also shifts the \(\pm 1.25 \mathrm{~V}\) range of its input to \(2.5 \pm 1.25 \mathrm{~V}\), as required by the analog-todigital converter.

The analog-to-digital converter, U606, is clocked at 15 MHz by U605. On-chip digital filtering reduces the output rate to 468.75 kHz . Output samples are sent in a serial fashion using ADC_SCLK, ADC_SDATA, and ADC_DRDY to the Synthesis IC, U1201, where they can be read by either the DSP or Main Processor. ADC_DVAL is set low if the analog-todigital converter's input is over-driven.

U601 provides the voltage reference. The 2.5 V output of U601 is applied directly as the reference for the analog-to-digital converter U606.
The 2.5 V is divided by resistors R603 and R604 to 1 V , buffered by U602, and then used as the reference for the waveform DAC.

Digital-to-analog converter U607 receives serial data from the Synthesis IC, U1201, using DAC0_CLK, DAC0_STRB*, and DAC0_DATA. The analog voltage from U607 is applied to multiplexer U608, which is controlled by AM_nTEDLY from U302, and selects one of two functions for the U607 output. The two functions are:
- Trailing edge delay for fine control of the pulse width (AM_nTEDLY "low")
- Summing with V_AMPL (from the System DAC) to form the V_GAIN \(\pm\) signal used by U1801 to set the amplitude multiplier factor. This allows the DAC signal to be used for both amplitude modulation and sine wave flatness correction.

Chapter 5 Theory of Operation

\section*{System DAC}

See "A1 System DAC Schematic" on page 191.
The System DAC provides dc voltages that control various parameters of the instrument's operation. This schematic page also includes analog multiplexers that select various signals for measurement by the A/D Converter.
The System DAC U701 is loaded with serial data from the Main Gate Array, U302, using SYSDAC_CLK, SYSDAC_STRB*, and SYSDAC_DATA. The DAC's voltage reference is 2.5 V , provided by U601, and its nominal output ranges from 0 V to +2.5 V . The DAC's output is buffered and amplified to a \(\pm 2.5 \mathrm{~V}\) range by U702-A and applied to multiplexer U703.
Each switch in U703, along with an associated holding capacitor (C701 through 703, C707, and C709 through C712) and a buffer amplifier (U704, U705, U1601-B, and U1603-B), makes up a track-and-hold circuit whose output is a control voltage. In operation, SYSDAC_SEL(2:0) (from U302) are driven to select one of the track-and-hold circuits, and the DAC is loaded with a corresponding value. After allowing \(1.5 \mu\) sor the DAC to settle, the selected channel of the multiplexer is closed by the assertion of SYSDAC_SMPL and the holding capacitor is driven to U702-A's output voltage. After 12.7 ss, SYSDAC_SMPL is negated and process repeats for the next track-and-hold. All channels are continuously refreshed in this manner by hardware in U302 and U202.
\begin{tabular}{clll}
\hline U703 Output Channel & Function & Range \\
0 & V_CONTRAST & Sets the display viewing angle. & 0 to +5 V \\
1 & V_NULL & Nulls the multiplier input offset voltage. & \(\pm 2.5 \mathrm{~V}\) \\
2 & V_AMPL & Sets the output amplitude. & \(\pm 2.5 \mathrm{~V}\) \\
3 & V_OFFSET & Sets the output offset. & \(\pm 2.5 \mathrm{~V}\) \\
4 & V_LEDGE & Sets the pulse leading edge time. & 0 to +2.5 V \\
5 & V_TEDGE & Sets the pulse trailing edge time. & 0 to -2.5 V \\
6 & V_THRESH & Sets the square wave duty cycle. & \(\pm 2.5 \mathrm{~V}\) \\
7 & V_TBCAL & Sets the timebase frequency. & 0 to +5 V \\
\hline
\end{tabular}

Multiplexers U706, U707, and U708 switch various measurement signals into three output lines (MEAS1, MEAS2, and MEAS3). These lines are applied to multiplexer U603 and are used to monitor the instrument's output and measure signals for self-test and calibration.

\section*{Digital Circuitry}

The digital circuitry contains all the waveform generation circuitry and waveform memory. The main CPU and communications CPU (outguard) are also included.

\section*{Synthesis IC}

See "A1 Synthesis IC Schematic" on page 196.
U1201 is an SRAM-based field-programmable gate array that implements most of the logic for waveform generation. The Main Processor loads data into U1201 from main memory to implement one of two "personalities": DDS waveform generation or Pulse waveform generation.

The instructions are loaded into the Synthesis IC at wakeup or when the instrument's output mode is changed between DDS and Pulse. The instructions are loaded via a serial interface using SYN_CLK, SYN_STATUS*, SYN_CONFIG*, SYN_CONFDONE, and SYN_DATA0.

The Synthesis IC interfaces to the DSP and Main Processor through a shared 16 -bit bus (SHR_D( \(0: 15\) ) and SHR_A( \(0: 15\) )).

The analog-to-digital converter sends serial data to U1201 using ACD_SDATA, ADC_SCLK, and ADC_DRDY. The \(15-\mathrm{MHz}\) ADC_SCLK clocks the data during the first half of the 32-cycle analog-to-digital conversion cycle. ADC_DRDY marks the beginning of a new word and synchronizes the internal shift register.
U1201 has two identical DAC interfaces, DAC0 and DAC1. DAC0 (U607) is used for frequency-response leveling and amplitude modulation, as well as fine delay for pulses. DAC1 (U1009) is the fine control for the trigger delay.
Data is sent to the triggered phase lock loop (U904) through a serial interface using TRG_DCLK, TRG_DATA, TRG_STRB. The VCO (0:6) lines are used by U907 to coarsely set the triggered VCO's frequency.

The main Synthesis IC clock is CLK_d4. This is the 200 MHz clock divided by 4 ( 50 MHz ). A second clock, CLK_d2, provides a 100 MHz clock used by the Synthesis IC to "accelerate" the waveform addresses.

Chapter 5 Theory of Operation

\section*{Synthesis IC}

\section*{DDS Behavior}

DDS waveform generation begins with a high-resolution phase accumulator. The most significant phase bits are interpolated into four waveform address streams. These four address streams are then interleaved into two streams at twice the rate. These two streams become the A_EVN and A_ODD waveform address lines.

During burst operations, an on-chip counter provides coarse trigger delay and circuitry that counts waveform cycles and stops the process when the end of a burst is reached.

\section*{Pulse Behavior}
"Even" and "Odd" leading- and trailing-edge bit streams are generated in the Synthesis IC and emitted at the CLK_d2 rate ( 50 MHz to 100 MHz ). These bit streams are interleaved by the Synchronous Multiplexer into single leading- and trailing-edge pulses which determine pulse period and width to within one CLK cycle ( 5 ns to 10 ns ). To achieve better period resolution the frequency of the clock is varied between 100 MHz and 200 MHz by the Triggered PLL. To achieve better pulse-width resolution, a trailing-edge delay vernier circuit (U1505-A, U1506-A, U1508, and associated components) is employed.

\section*{Timebase}

See "A1 Timebase Schematic" on page 192.
The Timebase provides a 10 MHz clock from which all the waveform generation timing signals are ultimately derived. This clock can have one of two sources: the internal crystal oscillator (U803) or an External BNC input connector.

U803's frequency is controlled by the System DAC signal, V_TBCAL. When an external timebase is used, EXT_TB_EN is asserted, turning Q801 and U803 off. EXT_TB_EN also turns Q802 on, grounding U803's control voltage input. U804-buffers U803's output and inverts it so when U803 is off, U804-D's output is high.

The external input is isolated by T801 and applied to comparator U802. U802 has two complementary outputs. One output is enabled by EXT_TB_EN. The other output drives a charge pump circuit made up of C809, CR801, C811, and R808. The voltage on C811 builds up when an external signal is present and asserts EXT_TB_DET to inform the main controller to use the external input (and assert EXT_TB_EN).

The outputs of the two timebase sources are ORed by U804-A and become the FREF and PRI_FREF reference signals used by various parts of the instrument. U804-B buffers FREF, then drives it out the " 10 MHz Out" BNC, J802.

The +16 V supply is filtered then regulated to a clean +5 V by U 801 for use by the frequency reference circuits.

Chapter 5 Theory of Operation

\section*{Phase Locked Loops}

See "A1 Phase-Locked Loops Schematic" on page 193.
There are two phase locked loops (PLLs). A primary PLL, which ultimately furnishes the clocks for DDS waveforms, and a triggered PLL, which is used in pulse generation.
The primary PLL multiplies the 10 MHz frequency reference to 800 MHz . The PLL synthesizer, U901, is programmed at power on using the serial transfer lines PRI_DATA, PRI_DCLCK, and PRI_STRB from the Main Processor U202. The frequency reference, PRI_FREF, is obtained from U804 in the timebase circuits.

Voltage controlled oscillator, U903, can be tuned from 797 MHz to 803 MHz . Part of the 800 MHz output is fed back to the PLL synthesizer and phase-compared to the reference frequency.

U901 asserts PRI_LOCK when the PLL is locked. This signal is used by the main processor (and can be reported to the front panel display and the GPIB status byte).

U902 buffers the VCO control voltage and sends it through U707 to be measured during self-test. Q901 provides a means to turn off U903 for testing.

The triggered phase lock loop is programmed by the Synthesis IC through lines TRG_DCLK, TRG_STRB, and TRG_DATA. The 25 MHz frequency reference is derived from the 800 MHz clock by U1101, U1102, and U1103. The triggered PLL is tuned from 100 MHz to 200 MHz in 2 kHz steps.

The triggered PLL synthesizer, U904, drives U905 which shifts and scales the output voltage to match the input requirements of varactor CR901. U907 is a programmable delay, fed back upon itself through a differential RC network (the capacitance of CR901, resistors R929 and R930, and gate U906). U907 is programmed through the \(\mathrm{VCO}(6: 0)\) lines from the Synthesizer IC.

\(\mathrm{VCO}(6: 0)\) are chosen to set the frequency as close as possible to the desired frequency, then the loop adjusts the voltage on the varactor to fine tune the frequency.

When the instrument is generating pulses, PRI_nTRGe is low to enable U907; otherwise, PRI_nTGRe is high. TRIG_SYNC* for the Trigger Delay Circuit goes low briefly when the instrument is triggered, disabling U906 and stopping the oscillator. When TRIG_SYNC* goes high again, the oscillator starts up synchronized to the trigger.

Chapter 5 Theory of Operation Clock Divider

\section*{Clock Divider}

See "A1 Clock Divider and Control Schematic" on page 195.
U1101 divides the 800 MHz clock from U903 by two, producing a differential 400 MHz clock signal, CLKx2 \(\pm\). TRIG_SYNC from the Trigger Delay circuits goes high briefly when the instrument is triggered, disabling this divider for a short time to synchronize the synthesizer with the trigger. U1102 and U1103 divide CLKx \(2 \pm\) by 16 to create the 25 MHz frequency reference, TRG_FREF, for the triggered PLL. U1104 and U1105 form a divide-by-2 circuit that can be disabled by negating PRI_nTRGe (when the triggered PLL is used) or by asserting STOPPEDe (when waiting for a trigger).
STOPPEDe also disables the output from the triggered PLL (TRG_VCO \(\pm\) ) at U1106-D. The differential outputs of U1105 (PRI_CLK \(\pm\) ) and U1106-D (TRG_CLK \(\pm\) ) are OR-ed together by U1106-A and U1106-B to form duplicate versions of the clock from which all other waveform-generation timing is derived. Note that either PRI_CLK \(\pm\) or TRG_CLK \(\pm\), but not both, will be active (as determined by the state of PRI_nTRGe).
The output of U1106-A is fed to U1106-C, where it can be disabled by WFDAC_HOLDe. U1106-C's differential output (WFDAC_CLK \(\pm\) ) clocks the waveform DAC, U1701, and U1504. It is disabled by WFDAC_HOLDe to keep the instrument's output fixed while changing functions.
The complimentary outputs of U1106-B, LOGIC_CLK and LOGIC_CLK*, provide timing for the remainder of the waveform-generation logic. LOGIC_CLK is \(180^{\circ}\) out of phase with WFDAC_CLK to satisfy the timing requirements of the waveform DAC.

One half of U1109-A divides LOGIC_CLK by two to create the 100 MHz signal, CLK_d2e. The other half of U1109-A divides CLK_d2e by two to create a 50 MHz signal that is delayed by 2.5 ns in U1110 to become CLK_d4e. CLK_d2e* is gated by U1107-A and U1107-B, then re-clocked by U1109-B to form two 100 MHz clocks, CLK_d2_ODDe and CLK_d2_EVNe, that can be individually disabled by negating either CLK_EN_ODD or CLK_EN_EVN. U1111 translates CLK_d4 and CLK_d2_ODDe, CLK_d2_EVNe, and CLK_d2e into their TTL equivalents. CLK_d4 and CLK_d2 are used by the Synthesis IC. CLK_d2_ODD and CLK_d2_EVN are used by the Waveform RAM.

The state of the flip-flop U1108 determines whether the synthesizer is "stopped" (waiting for trigger) or "running". In normal operation, a trigger is required to start the synthesizer and an assertion of STOP (from the Synthesis IC by way of the Synchronous Multiplexer) is required to stop it. When a trigger occurs, TRIG_SYNC is asserted to disable clock divider U1108, causing STOPPEDe to go low. Then when TRIG_SYNC is negated, clocks are allowed to propagate to the rest of the system and synthesis begins. Normally, when STOP is asserted, a " 1 " is clocked into U1108 and the system stops. In gated burst mode, however, STOP is asserted at the end of each waveform cycle, but U1107-D and U1107-E force U1108's "D" input low unless the gate signal (TRIGe) is false.

Chapter 5 Theory of Operation

\section*{Trigger and Delay}

See "A1 Trigger Schematic" on page 194.
The instrument has a bi-directional, chassis referenced, TTL trigger BNC connector. Triggering can occur either from the external trigger BNC input or from the instrument's internal trigger. The user can elect to send the instrument's internal trigger out the trigger BNC connector to synchronize other instruments.
External trigger inputs are buffered by U1002-A and applied to the opto-isolator U1003. U1002-A has a small amount of positive feedback through R1019 to provide hysteresis. U1004-A converts the external trigger to ECL voltages.
When the internal trigger is selected and a trigger out is desired, the TRIG_OUT signal provides the trigger out. This signal is opto-isolated by U1001 and applied to three-state buffers, U1002-B, C, D which provide the current drive for the external trigger. TRG_OUT_EN* from U105 enables the outputs of U1002-B, C, D.
U1005-A, U1005-B, and U1005-C are AND gates whose outputs are connected together to form the trigger input selector. Either slope of the external input (EXT_TRG+ or EXT_TRG-) or the internal trigger signal (INT_TRG) can be selected by asserting the proper enable signal (EXT_TRG+_EN, EXT_TRG-_EN, INT_TRG_EN). U1005-D ensures that the instrument cannot be triggered unless triggers are enabled (TRG_CTL(0) is high) and the synthesizer is stopped.
A variable trigger-delay circuit consisting of U12004-B, U1006 through U1009, and associated components is used to synchronize the synthesizer to the selected trigger. This circuit can provide up to 40 ns of delay with approximately 10 ps resolution. Trigger delays up to 85 seconds are achieved by counting clocks in the Synthesis IC, and then interpolating between the clocks with this circuit.

Assuming the synthesizer is stopped and triggers enabled, TRIG_ARM will be high. A rising edge on TRIGe will then clock a " 1 " into flip-flop U1007, causing U1008 pin 2 to go "low", and allowing C1007 to begin charging in a negative direction through R1049. TRIG_SYNC is also asserted at this time to disable the synthesizer clocks. Comparator U1004-B monitors the voltage on C1007 and asserts TRIG_START when it falls below a threshold set by U1009, U1006, and associated components. When TRIG_START is asserted, U1007 is reset, thereby negating TRIG_SYNC and causing C1007 to quickly discharge back to the high output level of U 1008 . When the voltage on C1007 rises above the comparator's threshold, TRIG_START is negated. When this circuit is properly calibrated, TRIG_SYNC's pulse width will vary from a minimum of 15 ns (corresponding to a 0 ns trigger delay setting) to 55 ns . TRIG_START's pulse width is typically 5 ns .

U1009 is a DAC that sets the delay of this circuit by controlling U1004-B's threshold voltage. It receives serial data from U1201 via the DAC1_CLK, DAC1_STRB, and DAC1_DATA lines. U1009's output, V_TRIGDLY, ranges from -3 V to +2.5 V (the lower the voltage, the longer the delay). U1006-B sets the current in Q1001 (from 0 to \(120 \mu \mathrm{~A}\) ) according to the difference between V_TRIGDLY and VREF, as buffered by U1006-A. This current is converted to the comparator's threshold voltage (approximately -0.9 V to -1.6 V ) by U1006-C.

U1007's differential output is low-pass filtered and amplified by U1006-D to form MEAS_TDCAL. The dc voltage on MEAS_TDCAL varies linearly with TRIG_SYNC's duty cycle. This voltage is measured by the modulation A/D converter when the instrument internally calibrates this circuit.

Chapter 5 Theory of Operation

\section*{Waveform RAM}

See "A1 Waveform Memory Schematic" on page 197.
There are two banks of waveform RAM, referred to as "ODD" (U1305) and "EVEN" (U1304). These RAMs perform all operations synchronously. When writing, address and data are clocked into input latches and then stored in the memory by on-chip self-timed circuitry. When reading, address is latched on one clock edge and data is clocked out on the next clock edge.

U1304 and U1305 have two clock sources. In normal operation they are clocked at 100 MHz using the CLK_d2_EVEN and CLK_d2_ODD clocks generated by U1111. When being accessed by the Main CPU or DSP, they are clocked by WFRAM_CLK from U302.

U1301, U1302, and U1303 are address multiplexers. U1306 and U1307 are data multiplexers. These multiplexers allow the waveform RAM to be disconnected from the normal signal path and connected to the shared bus. The multiplexers are "zero-delay" analog switches controlled by PROG_USE*_EVN and PROG_USE*_ODD from U1201.

CR1301 is placed in the multiplexer's power supply to lower the supply voltage to approximately 4.3 V to protect the waveform RAM from higher signal swings that may be exist on the shared bus.

\section*{Synchronous Multiplexer}

See "A1 Synchronous Multiplexer Schematic" on page 198.
Waveform data from the Waveform RAM is converted from TTL levels to ECL levels using resistive dividers (R1402 through R1413, R1417 through R1428, R1437 through R1448, and R1455 through R1466). The control signals from U1202 are converted from TTL to ECL by U1402 and U1403.

U1404 through U1407 form a pipeline stage clocked at 100 MHz by CLK_d2e. U1408 and U1409 interleave "even" and "odd" data from U1404 through U1406 into a single 200 MHz data stream, WFD(11:0), for the Waveform DAC. Similarly, "even" and "odd" signals from U1407 are interleaved by U1410. U1408 through U1410 are registers, clocked at 200 MHz by LOGIC_CLK, with input multiplexers that are controlled by EVN_nODD (derived from CLK_d2e).

In normal operation, "even" waveform data is fed to the registers with CLK_d2e is high, and "odd" data is selected when CLK_d2e is low. However, U1401-D and U1401-C can override the state of CLK_d2e and force EVN_nODD to be high or low, depending upon the states of EVN_ONLY and ODD_ONLY (from U1201). Asserting EVN_ONLY causes data from the "odd" waveform memory to be ignored, allowing the memory to be accessed by the main processor or DSP while the system is running. Similarly, asserting ODD_ONLY allows the "even" memory to be accessed. Certain parameters, such as burst phase and ramp symmetry, are modified by re-writing waveform memory while the system is running.

\section*{Main Processor}

See "A1 Main Processor Schematic" on page 186.
U202 is the main CPU for the instrument. U214 provides the 18 MHz clock for the main CPU. The main CPU incorporates a number of on-chip peripherals including:
- Asynchronous serial communications (UART)
- Autonomous synchronous serial communications (QSPI)
- Programmable periodic interrupt timer (PIT)
- 16-channel intelligent timer/counter (TPU)

Reset circuit U401 (shown on schematic 4) is the main CPU reset and power failure circuit. U401 performs three functions:
1. Generates a shutdown on power fail.
2. At power up, ensures the clocks and CPU have stable power before the CPU starts running.
3. Prevent multiple turn-on/turn-off cycles during unstable power conditions by keeping RESET* asserted until power is steady.

The PWR_FAIL* signal from the main power supply indicates when ac power has been lost. When PWR_FAIL* is asserted, U401 asserts ACFAIL* for approximately 4 ms and then asserts RESET* for a timed minimum duration or until power completely fails. The ACFAIL* signal is applied to the CPU IRQ6 input and instructs the main CPU to save the current state in non-volatile memory. The RESET* signal suspends main CPU operation. The main CPU wake-up configuration is set by R228 through R235.
The main CPU uses seven chip select lines; CS0 through CS5 and CSBOOT. These lines select the RAM, FRAM, and Flash ROM when appropriate. ROMs U207, U208, U209, and U210 are each 512k x 8, providing 1 Meg of 16-bit words. U203 and U204 are 512k x 8 SRAM chips, providing 512 k -words of 16 -bit RAM space. U211 is a ferroelectric RAM used to store non-volatile calibration coefficients and the power-on state of the instrument.

\section*{Main Gate Array}

See "A1 Main Gate Array Schematic" on page 187.
U302 is a Field-Programmable Gate Array. When RESET* is asserted, U301 serially loads the gate array with its contents. U302 asserts MAR_AWAKE* to indicate to the CPU that it is loaded and ready.

The Main Gate Array performs many functions within the instrument including:
- Main CPU address decoding and bus handshaking. It detects two address ranges; one for internal register programming and one for accessing devices on the shared bus (including DSP program RAM, DSP data RAM, and the Synthesis IC control registers.
- DSP and Waveform RAM bus interface.
- Timers. U302 has two internal timers. One timer is used for internal trigger operations. The other timer generates the front panel LCD clock.
- DSP serial communications. This serial communication allows the Main Gate Array to send incremental, low impact changes in the waveform to the synthesizer without affecting the continuity of the waveform or modulation output.
- QSPI scanned serial bus support. The QSPI data is decoded into signals that control the analog output path attenuators and relays. Additionally, the QSPI data can be set to a "loop-back" mode to test the external data path and shift registers.
- Provides the serial interface required to load the configuration of the Synthesis Gate Array, U1201.
- System DAC control. The Main Gate Array controls and times the System DAC operations, including the sequence; disconnect the System DAC from the present sample-and-hold output, latch new data into the DAC, change the multiplexer address to the new output, allow the System DAC to settle, and then connect the System DAC to the new sample-and-hold circuit.

U303 and U304 act as a 16-bit serial-in parallel-out shift register. The register converts serial data from the QSPI output of the Main CPU to a parallel word. Registers U305, U306, U307, and U308 capture the converted words and drive various logic-level signals. Registers U305 and U306 are devoted to driving relays.

Chapter 5 Theory of Operation DSP and Gateway

\section*{DSP and Gateway}

See "A1 DSP Schematic" on page 189.
U506 is the digital signal processor. It is clocked at 40.96 MHz from U505. The DSP RAM, U507, is loaded by the Main CPU through the gateway. U506 also communicates with the main CPU via a serial connection, assisted by U302.

The bus gateway is controlled by the Main CPU U302. The gateway uses U501, U502, U503, and U504 to allow the Main CPU to load the DSP RAM (U507) and then isolates the two busses so the DSP can operate independently of the main CPU.
The DSP has no ROM and instructions are loaded by the main CPU.

\section*{Earth-Referenced Logic}

See "A1 Earth Referenced Communications Schematic" on page 185.
The earth-referenced logic provides triggers and communications. Microprocessor U105 handles GPIB (IEEE-488) control through bus interface chip U109 and bus receiver and driver chips U110 and U111. U105 also controls the RS-232 interface through UART U106 and transceiver chips U107 and U108. U107 and U108 provide the required level shifting between the RS- \(232 \pm 9 \mathrm{~V}\) levels and the +5 V logic levels by internal charge pumping circuits using capacitors C104 and C110.

Communication between the main CPU and the earth-referenced logic is through an optically-isolated, bi-directional serial interface, U102 and U201.
U101 provides an independent reset of the floating microprocessor based upon the +5 _ER supply. The chassis ground and earth-referenced logic ground (IOCOM) are dc coupled through transformer T101. IO Power (IOVCC) is derived from the earth-referenced power supply (+5_ER) through T101. T101 acts as a balun to reduce EMI.

\section*{Front Panel}

See "A2 Keyboard Schematic" on page 205 and "A2 Display Schematic" on page 206.

The front panel contains a keyboard, a liquid crystal display (LCD), a piezoelectric speaker, and a rotary encoder.
The keyboard is arranged in five columns and eight rows. The keys are scanned one column at a time. Some of the keys have an LED incorporated into the key to indicate the instrument's operating state. U301 scans the columns and reads the key presses.

The rotary encoder uses a quadrature coding technique to allow the motion, speed and direction to be detected. The two sense lines from the rotary encoder are buffered by U215 and applied to two of the TPUCH inputs of the main CPU. The main CPU tracks and accumulates knob motion information.

The display is a 256 X 64 passive matrix color LCD. This display assembly includes the backlight lamp and LCD driver circuitry. The display is lighted by a replaceable, 3-watt, cold cathode fluorescent lamp. The lamp is powered by an inverter module that is current-regulated to supply 4.8 mA at approximately 300 Vdc . The backlight inverter module can be turned off by the LCD control circuitry.
U402 (on schematic 4) is the display controller. This controller reads the main CPU data and address lines and stores appropriate display data in SRAM U403. U403 runs continuously. U402 checks for main CPU activity before turning on the display to prevent burn-out. The CPU firmware incorporates a "bulb saver" feature that turns off the display after 1 hour of inactivity. R410, R412, R413, R415, and R418 provide the wake up configuration for the display controller.

The speaker is a piezoelectric element driven by U213-C from signals generated in the main CPU U202. The frequency and duration of the beeps are set by the main CPU.

Service

\section*{Service}

This chapter discusses the procedures involved for returning a failed instrument to Agilent Technologies for service or repair. Subjects covered include the following:
- Operating Checklist, on page 130
- Types of Service Available, on page 131
- Repackaging for Shipment, on page 132
- Cleaning, on page 132
- Electrostatic Discharge (ESD) Precautions, on page 133
- Surface Mount Repair, on page 133
- Troubleshooting Hints, on page 134
- Self-Test Procedures, on page 136
- Disassembly, on page 140

\section*{Operating Checklist}

Before returning your instrument to Agilent Technologies for service or repair, check the following items:

\section*{Is the instrument inoperative?}
- Verify that the ac power cord is connected to the instrument.
- Verify that the front-panel On/Standby switch has been pushed.

\section*{Does the instrument fail self-test?}

Remove all external connections to the instrument. Errors may be induced by ac signals present on the external wiring during a self-test. Long test leads can act as an antenna causing pick-up of ac signals.

\section*{Types of Service Available}

If your instrument fails during the warranty period (within three years of original purchase), Agilent Technologies will replace or repair it free of charge. After your warranty expires, Agilent will replace or repair it at a competitive price. The standard repair process is "whole unit exchange". The replacement units are fully refurbished and are shipped with new calibration certificates.

\section*{Standard Repair Service (worldwide)}

Contact your nearest Agilent Technologies Service Center. They will arrange to have your instrument repaired or replaced.

\section*{Agilent Express Unit Exchange (U.S.A. Only)}

You will receive a refurbished, calibrated replacement Agilent 33250A in 1 to 4 days.

1 Call 1-877-447-7278 (toll free) to place your Agilent Express order.
a You will be asked for your serial number, shipping address, and a credit card number to guarantee the return of your failed unit.
b If you do not return your failed unit within 15 business days, your credit card will be billed for the cost of a new Agilent 33250A.

2 Agilent will immediately send a replacement 33250A directly to you.
a The replacement unit will come with instructions for returning your failed unit. Please retain the shipping carton and packing materials to return the failed unit to Agilent. If you have any questions regarding these instructions, please call 1-877-447-7278.
b The replacement unit will have a different serial number than your failed unit. If you need to track your original serial number, a blank label will be shipped with the replacement unit to record your original serial number.

Chapter 6 Service

\section*{Repackaging for Shipment}

If the unit is to be shipped to Agilent for service or repair, be sure to:
- Attach a tag to the unit identifying the owner and indicating the required service or repair. Include the model number and full serial number.
- Place the unit in its original container with appropriate packaging material for shipping.
- Secure the container with strong tape or metal bands.

If the original shipping container is not available, place your unit in a container which will ensure at least 4 inches of compressible packaging material around all sides for the instrument. Use static-free packaging materials to avoid additional damage to your unit.

Agilent suggests that you always insure shipments.

\section*{Cleaning}

Clean the outside of the instrument with a soft, lint-free, slightly dampened cloth. Do not use detergent. Disassembly is not required or recommended for cleaning.

\section*{Electrostatic Discharge (ESD) Precautions}

Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damage can occur at electrostatic discharge voltages as low as 50 volts.

The following guidelines will help prevent ESD damage when servicing the instrument or any electronic device.
- Disassemble instruments only in a static-free work area.
- Use a conductive work area to reduce static charges.
- Use a conductive wrist strap to reduce static charge accumulation.
- Minimize handling.
- Keep replacement parts in original static-free packaging.
- Remove all plastic, foam, vinyl, paper, and other static-generating materials from the immediate work area.
- Use only anti-static solder suckers.

\section*{Surface Mount Repair}

Surface mount components should only be removed using soldering irons or desoldering stations expressly designed for surface mount components. Use of conventional solder removal equipment will almost always result in permanent damage to the printed circuit board and will void your Agilent Technologies factory warranty.

\section*{Chapter 6 Service}

\section*{Troubleshooting Hints}

This section provides a brief check list of common failures. Before troubleshooting or repairing the instrument, make sure the failure is in the instrument rather than any external connections. Also make sure that the instrument is accurately calibrated within the last year (see "Calibration Interval", on page 50). The instrument's circuits allow troubleshooting and repair with basic equipment such as a \(61 / 2\) digit multimeter.

\section*{Unit is Inoperative}
- Verify that the ac power cord is connected to the instrument.
- Verify that the front-panel On/Standby switch has been pushed.

\section*{Unit Reports Error 705}

This error may be produced if you accidentally turn off power to the unit during a calibration or while changing a non-volatile state of the instrument. Recalibration or resetting the state should clear the error.

If the error persists, a hardware failure may have occurred.

\section*{Unit Fails Self-Test}

Ensure that all terminal connections (both front panel and rear terminals) are removed while the self-test is performed.

\section*{Power Supplies}

Verify the power supplies generated on the A1 board.
WARNING Shock Hazard. To check the power supplies, remove the instrument cover as described in "Disassembly", on page 140. Be sure to use the correct ground point when checking the supplies.

The power supply voltages are tabulated below.
\begin{tabular}{|c|c|c|}
\hline Power Supply & Minimum & Maximum \\
\hline\(+12 \mathrm{v} \_\mathrm{ER}\) & 11.4 V & 12.6 V \\
\hline\(+5 \mathrm{~V} \_\mathrm{ER}\) & 4.75 V & 5.25 V \\
\hline-5.2 V & -5.46 V & -4.94 V \\
\hline-16 V & -16.8 V & -15.2 V \\
\hline+16 V & 15.2 V & 16.8 V \\
\hline+5.2 V & 4.94 V & 5.46 V \\
\hline+3.3 V & 3.135 & 3.465 \\
\hline-2.1 V & -2.205 & -1.995 \\
\hline
\end{tabular}
- Power supply test points are marked on the A1 circuit board.
- Circuit failures can cause heavy supply loads which may pull down the regulator output voltage.
- Always check that the power supplies are free of ac oscillations using an oscilloscope.
- The main power supply contains a fuse rated F5AH250V. Replacing this fuse is not recommended. Replace the entire main power supply assembly.

\section*{Self-Test Procedures}

\section*{Power-On Self-Test}

Each time the instrument is powered on, a small set of self-tests are performed. These tests check that the minimum set of logic and output hardware are functioning properly. The power-on self test consists of tests 601 through 606.

\section*{Complete Self-Test}

To perform a complete self-test:

1 Press unilly on the front panel.
2 Select the Self Test softkey from the "Test / Cal" menu.
A complete description of the self-tests is given in the next section. The instrument will automatically perform the complete self-test procedure when you release the key. The self-test will complete in approximately 30 seconds.
- If the self-test is successful, "Self Test Pass" is displayed on the front panel.
- If the self-test fails, "Self Test Fail" and an error number are displayed.

\section*{Self-Tests}

A complete self-test performs the following tests. A failing test is indicated by the test number and description in the display.

\section*{System logic failed}

This test performs a write/readback test on the two control registers (Control Register 1 and Control Register 2/Keyboard Readback) the main logic FPGA, U302. Failure of this test indicates that the main CPU (U202) can't communicate with the main logic FPGA (U301).

DSP Failed
This test checks if the DSP (U506) is running and able to respond to commands from the main processor.

Waveform logic failed
This test performs a write/readback test on several of the registers in the waveform logic FPGA (U1201). Failure of this test indicates that the main CPU (U202) can't communicate with the waveform logic FPGA.

\section*{604 \\ Even Waveform memory failed}

This test performs a write/readback test of the entire waveform memory (64k). The following procedure is carried out for each 16K memory block in the even and odd memory banks ( 8 total). Waveform memory is zeroed out then readback to verify that all memory locations are zero. Each memory location is written with a data value equal to its address (modulo 16384). The entire memory is readback to make sure that the appropriate data values were written. When a memory address fails a test, the routine reports an error and skips ahead to the next block of waveform memory, without testing any more addresses in bad memory block. Failure can occur due to waveform memory or waveform logic problems.

Odd Waveform Memory Failed
Same as test 604, but is performed on the odd waveform memory bank.
Cross-isolation interface failed
This test verifies that the cross-isolation communications interface is working properly. This test has the I/O processor U105-A) perform an internal self-test and return the result. A failure indicates that I/O processor either timed out or failed its self-test.

Primary phase locked loop failed
This test looks at the lock signal on the primary phase locked loop to determine if the PLL is locked. The instrument is then switched to pulse mode and the secondary PLL's lock is tested at 200 MHz and 100 MHz . Primary PLL's lock state is checked again after returning to normal (DDS) mode. A failure indicates that the PLL's (primary or secondary) are having trouble maintaining a lock.

Secondary phase locked loop failed at 200 MHz
This test looks at the lock signal on the secondary phase locked loop at a frequency of 200 MHz to determine if the PLL is locked.

\section*{Power supplies failed}

This test uses the internal ADC to measure the voltages of the internal power supplies. A failure means one or more of the power supplies measured outside the expected range. The error numbers and their corresponding power supplies are listed below.

607: Ground
608: +16
609: +12V
610: +5V
611: +3.3V
612: -2.1V
613: -5.2V
614: -16V

Secondary phase locked loop failed at 100 MHz
Same as test 616 except the PLL is tested at 100 MHz .

626: Analog/Digital path selector
627: -10 dB attenuator path
628: -20 dB attenuator path
629: +20 dB amplifier path
630: Internal ADC overranged during one of the above tests

Chapter 6 Service
Disassembly

\section*{Disassembly}

The following tools are recommended for disassembly.
- T15 Torx \({ }^{\circledR}\) driver (all screws)
- 11 mm nut driver (front-panel disassembly)
- 14 mm nut driver (rear-panel BNC connectors)
- 5 mm nut driver (rear-panel RS-232 connector)
- \#1 Pozi-Drive (for display assembly)

WARNING
SHOCK HAZARD. Only service-trained personnel who are aware of the hazards involved should remove the instrument covers. To avoid electrical shock and personal injury, make sure to disconnect the power cord from the instrument before removing the covers.

\section*{General Disassembly Procedure}

1 Turn off the power. Remove all cables from the instrument.
2 Rotate the handle upright and pull off.


3 Pull off the instrument bumpers.


4 Loosen the two captive screws in the rear bezel and remove the rear bezel.


\section*{Chapter 6 Service}

\section*{Disassembly}

5 Remove the screw in the bottom of the instrument cover. Slide off the cover.


6 Remove the screw securing the top shield. Slide the shield back and then up to lift off. The A3 power supply assembly is attached to the top shield.


7 Lay the top shield and power supply assembly to the side.


Many of the service procedures can now be performed without further disassembly. Troubleshooting and service procedures that require power be applied can be performed with the instrument in this state of disassembly.

\author{
WARNING
}

SHOCK HAZARD. Only service-trained personnel who are aware of the hazards involved should remove the instrument covers. Dangerous voltages may be encountered with the instrument covers removed.

Chapter 6 Service Disassembly

\section*{Removing the Main Power Supply Assembly}

Disconnect the ribbon cable and the power cable. The main power supply should be replaced as an assembly. Remove the four screws to remove the power supply assembly from the top shield and safety shield. Be sure to retain the top shield and safety shield for re-use.


\section*{Front-Panel Removal Procedure}

1 Turn the unit over. Remove the bottom shield screw and bottom shield.


2 Pull up to remove the Sync and Output cable from the cable clip. Disconnect the Sync and Output cable from the main board. Pull up the clamp and disconnect the front panel ribbon cable from the main board.


3 Remove the two screws holding the front edge of the A1 assembly to the chassis.


\section*{Chapter 6 Service Disassembly}

4 There should now be enough play in the chassis sides and front panel plastic to allow the side of the front panel to be disconnected from the chassis. Remove the right side first as shown.


\section*{Front-Panel Disassembly}

1 Remove the captive screw holding the safety shield. Carefully pry the RFI shield clips out of the slots in the safety shield and remove the safety shield.


2 Unplug the inverter cable on the display assembly. Lift up the clamp and unplug the ribbon cable. Lift out the display assembly.


Chapter 6 Service

\section*{Disassembly}

3 Remove the knob. Remove the nut holding the rotary encoder to the front-panel. Lift out the A2 assembly.


\section*{Removing and Replacing the Fan}

The fan is held in place by four custom vibration-reducing fasteners. To remove the fan, disconnect the fan cable from the A1 assembly. Pry up and pull out the center tab of the fasteners.


Chapter 6 Service
Disassembly

\section*{Replaceable Parts}

This chapter contains information for ordering replacement parts for your instrument. The parts lists are divided into the following sections.
- 33250-66511 - Main PC Assembly (A1), on page 153
- 33250-66502 - Front-Panel PC Assembly (A2), on page 176
- 33250A Chassis Assembly, on page 177
- 33250-60201 - Front-Panel Assembly, on page 178
- Manufacturer's List, on page 179

Parts are listed in alphanumeric order according to their schematic reference designators. The parts lists include a brief description of each part with applicable Agilent part number and manufacturer part number.

\section*{To Order Replaceable Parts}

You can order replaceable parts from Agilent using the Agilent part number or directly from the manufacturer using specified manufacturer's part number shown. Note that not all parts listed in this chapter are available as field-replaceable parts. To order replaceable parts from Agilent, do the following:

1 Contact your nearest Agilent Sales Office or Service Center.
2 Identify the parts by the Agilent part number shown in the replaceable parts list.

3 Provide the instrument model number and serial number.

33250-66511 - Main PC Assembly (A1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & \[
\begin{array}{|c|}
\hline \text { Agilent Part } \\
\text { Number }
\end{array}
\] & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C101-C102 & 0160-7798 & 288 & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C103 & 0160-5947 & 11 & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C104-C107 & 0160-7736 & 56 & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C108 & 0160-5961 & 2 & FIXED CAPACITOR; 22PF 50 VOLTS & 02010 & 08055A220JAT A \\
\hline C109 & 0160-5957 & 4 & CAP-FXD 47pF +-5\% 50 V CER COG & 02010 & 08055A470JAT A \\
\hline C110-C113 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C114 & 0180-4918 & 1 & CAP 100UF 10V 20\% TANTD & 05524 & 293D107X0010D2 \\
\hline C115-C125 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C201 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C202 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C203-C205 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C206-C229 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline С301- С323 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C401 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C402 & 0160-7061 & 3 & CAP-FXD 2200pF 50 V & 02010 & 08055C222KAT \\
\hline C403 & 0180-3751 & 1 & CAP-FXD 1uF + -20\% 35 V TA & 02010 & TAJB105M035 \\
\hline C404 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C405 & 0180-4577 & 3 & CAP-FXD 10uF +-20\% 10 V TA & 12340 & T491B106M010AS \\
\hline C406 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C407 & 0160-8361 & 4 & CAP 0.22UF 25 V & 06352 & C2012X7R1E224K \\
\hline C408 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C409-C413 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C501 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C502 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C503-C518 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C601-C603 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C604 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C605-C606 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C607 & 0180-4538 & 16 & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C608 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C609 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C610 & 0160-5945 & 21 & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C611 & 0160-5957 & & CAP-FXD 47pF +-5\% 50 V CER COG & 02010 & 08055A470JAT A \\
\hline C612 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C613 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C614 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C615 & 0160-5945 & & C MLYS . 01 U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C616 & 0160-5950 & 3 & CAP-FXD 470pF 50 V & 02010 & 08055A471JAT A \\
\hline C617-C618 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C619 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C620 & 0160-7911 & 2 & CAP-FXD 4700pF +-1\% 50 V CER COG & 12340 & C1206C472F5GAC \\
\hline C621 & 0160-7307 & 1 & CAP-FXD 180pF 50 V & 02010 & 08055A181FAT_A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C622 & 0160-7061 & & CAP-FXD 2200pF 50 V & 02010 & 08055C222KAT \\
\hline C623 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C624 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C625 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C626 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C627 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C628 & 0160-6444 & 3 & CAP-FXD 0.022uF 50 V & 02010 & 08055C223KAT \\
\hline C629 & 0160-7061 & & CAP-FXD 2200pF 50 V & 02010 & 08055C222KAT \\
\hline C630 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C631-C632 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C701-C703 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C704 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C705 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C706 & 0160-5975 & 4 & CAP-FXD 10pF 50 V & 02010 & 08055A100JAT A \\
\hline C707 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C708 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C709-C718 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C801 & 0180-4758 & 2 & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T491D476M020AS \\
\hline C802-C804 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C805 & 0180-4577 & & CAP-FXD 10uF +-20\% 10 V TA & 12340 & T491B106M010AS \\
\hline C806-C808 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C809 & 0160-5967 & 9 & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C810 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C811 & 0160-7708 & 19 & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C812-C813 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C814 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C815 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C816 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C817 & 0160-7757 & 5 & CAP-FXD 47pF +-1\% 50 V CER COG & 02010 & 08055A470FATMA \\
\hline C901 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C902 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C903 & 0160-5958 & 1 & CAP-FXD 39pF +-5\% 50 V CER COG & 02010 & 08055A390JAT A \\
\hline C904 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C905 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C906 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C907 & 0160-7911 & & CAP-FXD 4700pF +-1\% 50 V CER COG & 12340 & C1206C472F5GAC \\
\hline C908 & 0160-5950 & & CAP-FXD 470pF 50 V & 02010 & 08055A471JAT A \\
\hline C909 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C911 & 0160-8361 & & CAP 0.22UF 25 V & 06352 & C2012X7R1E224K \\
\hline C912 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C913 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C914 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C915-C917 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C918 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C919 & 0160-6982 & 1 & CAP-FXD 0.033uF 50 V & 02010 & 08055C333KAT_A \\
\hline
\end{tabular}

Chapter 7 Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C920 & 0160-5945 & & CMLYS . 01050 V CAP. & 02010 & 08055C103KAT A \\
\hline C921 & 0160-7707 & 2 & CAP-FXD 0.47uF +-10\% 16 V CER X7R & 06352 & C3216X7R1C474K \\
\hline C922-C923 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C924-C925 & 0160-5945 & & C MLYS . 01 U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C926 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1001-C1002 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1003 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C1004 - C1005 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1006 & 0160-5957 & & CAP-FXD 47pF +-5\% 50 V CER C0G & 02010 & 08055A470JAT A \\
\hline C1007 & 0160-7721 & 1 & CAP-FXD 82pF +-1\% 50 V CER C0G & 02010 & 08055A820FATMA \\
\hline C1008 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C1009 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1010 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C1011 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1012 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1013 & 0160-5952 & 4 & CAP-FXD 330pF +-5\% 50 V CER C0G & 02010 & 08055A331JAT A \\
\hline C1014 & 0160-5967 & 9 & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C1015- C1017 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1018-C1019 & 0160-5944 & 15 & CAP-FXD 0.047uF +-10\% 50 V CER X7R & 02010 & 08055C473KAT A \\
\hline C1020-C1025 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1101 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C1102 & 0160-5945 & & C MLYS . 01 U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C1103 & 0160-5963 & 1 & CAP-FXD 18pF 50 V & 02010 & 08055A180JAT A \\
\hline C1104 & 0160-5955 & 2 & CAP-FXD 68pF +-5\% 50 V CER COG & 02010 & 08055A680JATRA \\
\hline C1105 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1106 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1107 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1108-C1117 & 0160-5944 & & CAP-FXD 0.047uF +-10\% 50 V CER X7R & 02010 & 08055C473KAT A \\
\hline C1118 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C1119 & 0160-5944 & & CAP-FXD 0.047uF +-10\% 50 V CER X7R & 02010 & 08055C473KAT A \\
\hline C1120-C1126 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1201 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C1202-C1219 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1220 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1301-C1329 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1401-C1426 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1501 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C1502 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1503 & 0160-5945 & & C MLYS . 01 U 50 V CAP. & 02010 & 08055C103KAT A \\
\hline C1504 & 0180-4577 & & CAP-FXD 10uF +-20\% 10 V TA & 12340 & T491B106M010AS \\
\hline C1505 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1506 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1507 & 0160-5945 & & C MLYS . 01 U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C1508 & 0160-5976 & 2 & CAP-FXD 12pF 50 V & 02010 & 08051A120JAT A \\
\hline C1509 & 0160-5945 & & C MLYS . 01 U 50V CAP. & 02010 & 08055C103KAT A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C1510 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1511 & 0160-7722 & 4 & CAP-FXD 39pF +-1\% 50 V CER C0G & 02010 & 08055A390FATMA \\
\hline C1512 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C1513 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1514 & 0160-5952 & & CAP-FXD 330pF +-5\% 50 V CER COG & 02010 & 08055A331JAT A \\
\hline C1515 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C1516-C1522 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1523 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1524-C1531 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1532 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1533 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1601 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1602 & 0180-4559 & 2 & CAP-FXD 68uF +-20\% 10 V TA & 12340 & T491D686M010AS \\
\hline C1603 & 0160-8361 & & CAP 0.22UF 25 V & 06352 & C2012X7R1E224K \\
\hline C1604 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1605 & 0160-6444 & & CAP-FXD 0.022uF 50 V & 02010 & 08055C223KAT \\
\hline C1606-C1607 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1610 & 0160-5956 & 2 & CAP-FXD 56pF 50 V & 02010 & 08055A560JAT A \\
\hline C1611 & 0160-6102 & 1 & CAT008 CAP,CER,CHIP & 02010 & 12065A152JATRA \\
\hline C1612 & 0160-7940 & 1 & CAP-FXD 0.027uF +-10\% 50 V CER X7R & 02010 & 08055C273KATA \\
\hline C1613 & 0160-8779 & 1 & CAP .056UF 50V 10\% COG 1206 & 12340 & C1206C564K4RAC \\
\hline C1615 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1616 & 0160-6444 & & CAP-FXD 0.022uF 50 V & 02010 & 08055C223KAT \\
\hline C1617 & 0160-5942 & 1 & CAP-FXD 1pF 50 V & 02010 & 08051A1R0CAT A \\
\hline C1618 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1619 & 0160-8361 & & CAP 0.22UF 25 V & 06352 & C2012X7R1E224K \\
\hline C1620 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1621 & 0180-4559 & & CAP-FXD 68uF +-20\% 10 V TA & 12340 & T491D686M010AS \\
\hline C1622-C1625 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1701 & 0160-8279 & 2 & CAP 2.7PF 50V +1-0.05PF COG 0805 & 02010 & 08055A2R7CATA \\
\hline C1702 & 0160-5962 & 3 & CAP-FXD 15pF +-5\% 50 V CER COG & 09939 & GRM40C0G150J050 \\
\hline C1703 & 0160-5961 & & FIXED CAPACITOR; 22PF 50 VOLTS & 02010 & 08055A220JAT A \\
\hline C1704 & 0160-5975 & & CAP-FXD 10pF 50 V & 02010 & 08055A100JAT A \\
\hline C1705 & 0160-5962 & & CAP-FXD 15pF +-5\% 50 V CER COG & 09939 & GRM40C0G150J050 \\
\hline C1707 & 0160-7757 & & CAP-FXD 47pF +-1\% 50 V CER COG & 02010 & 08055A470FATMA \\
\hline C1708 & 0160-5969 & 2 & CAPACITOR, FIXED CERAMIC CHIP & 02010 & 08051A3R3CAT A \\
\hline C1709 & 0160-7722 & & CAP-FXD 39pF +-1\% 50 V CER COG & 02010 & 08055A390FATMA \\
\hline C1710 & 0160-5970 & 1 & CAP-FXD 3.9pF 50 V & 06352 & C2012COG1H3R9C \\
\hline C1711 & 0160-7722 & & CAP-FXD 39pF + -1\% 50 V CER COG & 02010 & 08055A390FATMA \\
\hline C1712 & 0160-8280 & 1 & CAP-FXD 4.7PF +-5\% 50 V CER COG & 02010 & 08055A4R7CATA \\
\hline C1713 & 0160-5975 & & CAP-FXD 10pF 50 V & 02010 & 08055A100JAT A \\
\hline C1714 & 0160-5976 & & CAP-FXD 12pF 50 V & 02010 & 08051A120JAT A \\
\hline C1716-C1717 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1718 & 0160-7324 & 1 & CAP-FXD 120pF 50 V & 02010 & 08055A121FATMA \\
\hline C1719 & 0160-5975 & & CAP-FXD 10pF 50 V & 02010 & 08055A100JAT A \\
\hline
\end{tabular}

Chapter 7 Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C1720 & 0160-7757 & & CAP-FXD 47pF +-1\% 50 V CER COG & 02010 & 08055A470FATMA \\
\hline C1721 & 0160-5972 & 2 & CAP-FXD 5.6 pF 50 V CER COG & 06352 & C2012COG1H5R6D \\
\hline C1722 & 0160-7722 & & CAP-FXD 39pF +-1\% 50 V CER COG & 02010 & 08055A390FATMA \\
\hline C1723 & 0160-5972 & & CAP-FXD 5.6pF 50 V CER COG & 06352 & C2012COG1H5R6D \\
\hline C1724 & 0160-5969 & & CAPACITOR, FIXED CERAMIC CHIP & 02010 & 08051A3R3CAT A \\
\hline C1725 & 0160-7707 & & CAP-FXD 0.47uF +-10\% 16 V CER X7R & 06352 & C3216X7R1C474K \\
\hline C1726-C1732 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1733-C1734 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C1735 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1737 & 0160-7416 & 1 & CAP-FXD 1500pF +-10\% 50 V CER X7R & 06352 & C2012X7R1H152KT \\
\hline C1738 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1739 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1740 & 0160-5962 & & CAP-FXD 15pF +-5\% 50 V CER C0G & 09939 & GRM40C0G150J050 \\
\hline C1741 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1742-C1746 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1801-C1802 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1803 & 0160-5971 & 1 & CAP-FXD 4.7pF +-10.64pct 50 V CER COG & 09939 & GRM2165C1H4R7DD01D \\
\hline C1804 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1805 & 0160-8279 & & CAP 2.7PF 50V +1-0.05PF COG 0805 & 02010 & 08055A2R7CATA \\
\hline C1806 & 0160-5949 & 1 & CAP-FXD 680pF 50 V & 06352 & C2012COG1H681J \\
\hline C1807 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1808-C1809 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C1810 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1901 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1902 & 0160-5950 & & CAP-FXD 470pF 50 V & 02010 & 08055A471JAT A \\
\hline C1903 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1904 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C1905 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1906 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1907-C1910 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C1911 & 0180-3975 & 2 & CAP-FXD 2.2uF +-20\% 20 V TA & 02010 & TAJB225M020 \\
\hline C1912 & 0180-4535 & 7 & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T495X476M020AS \\
\hline C1913 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1914 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1915-C1918 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1919 & 0160-5979 & 1 & CAP-FXD 1.5pF 50 V & 00939 & GRM40-001COG1R5C050 \\
\hline C1920-C1921 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1923 & 0160-5977 & 2 & CAPACITOR, CERAMIC & 02010 & 08051A2CATRA \\
\hline C1924 & 0160-7757 & & CAP-FXD 47pF +-1\% 50 V CER COG & 02010 & 08055A470FATMA \\
\hline C1925 & 0160-5977 & & CAPACITOR, CERAMIC & 02010 & 08051A2CATRA \\
\hline C1926 & 0160-7757 & & CAP-FXD 47pF +-1\% 50 V CER COG & 02010 & 08055A470FATMA \\
\hline C1927 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C1929 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1930 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C1931 & 0180-3975 & & CAP-FXD \(2.2 \mathrm{uF}+-20 \% 20 \mathrm{~V}\) TA & 02010 & TAJB225M020 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C1932 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1933 & 0180-4535 & & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T495X476M020AS \\
\hline C1934 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1935-C1941 & 0160-7708 & & CAP 1000pF 50 V & 02010 & 08055A102JATRA \\
\hline C1942 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C1950 & 0160-5972 & & CAP-FXD 5.6pF 50 V CER C0G & 06352 & C2012COG1H5R6D \\
\hline C2001 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2002-C2003 & 0180-4535 & & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T495X476M020AS \\
\hline C2004 & 0180-4758 & & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T491D476M020AS \\
\hline C2005 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2006 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C2007 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2008 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2009 & 0180-4535 & & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T495X476M020AS \\
\hline C2010 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C2011 & 0160-5945 & & C MLYS .01U 50V CAP. & 02010 & 08055C103KAT A \\
\hline C2012 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2013 & 0160-5955 & & CAP-FXD 68pF +-5\% 50 V CER COG & 02010 & 08055A680JATRA \\
\hline C2014 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2015-C2016 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2017 & 0180-4535 & & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T495X476M020AS \\
\hline C2018 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C2019 & 0180-4545 & 2 & CAP-FXD 4.7uF +-20\% 20 V TA & 12340 & T491B475M020AS \\
\hline C2020-C2022 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2023 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2024 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C2025 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C2026 & 0160-5952 & & CAP-FXD 330pF +-5\% 50 V CER C0G & 02010 & 08055A331JAT A \\
\hline C2027-C2028 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2029 & 0160-7736 & & CAP-FXD 1uF +-10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C2030 & 0160-5956 & & CAP-FXD 56pF 50 V & 02010 & 08055A560JAT A \\
\hline C2031 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline C2032 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C2033 & 0160-7734 & 2 & Capacitor-FXD 68pF +-1\% 50 V CER C0G & 02010 & 08055A680FAT_A \\
\hline C2034 & 0180-4535 & & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T495X476M020AS \\
\hline C2035 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2036-C2038 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2039 & 0180-4545 & & CAP-FXD 4.7uF +-20\% 20 V TA & 12340 & T491B475M020AS \\
\hline C2040-C2042 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2043 & 0160-5944 & & CAP-FXD 0.047uF +-10\% 50 V CER X7R & 02010 & 08055C473KAT A \\
\hline C2044 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C2045 & 0160-5952 & & CAP-FXD 330pF +-5\% 50 V CER C0G & 02010 & 08055A331JAT A \\
\hline C2046 & 0160-5957 & & CAP-FXD 47pF +-5\% 50 V CER COG & 02010 & 08055A470JAT A \\
\hline C2047 & 0160-5944 & & CAP-FXD 0.047uF +-10\% 50 V CER X7R & 02010 & 08055C473KAT A \\
\hline C2048 & 0160-5947 & & CAP-FXD 1000pF 50 V & 02010 & 08055C102KAT A \\
\hline
\end{tabular}

Chapter 7 Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C2049 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C2050 & 0160-7734 & & Capacitor-FXD 68pF +-1\% 50 V CER COG & 02010 & 08055A680FAT_A \\
\hline C2051-C2052 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C2053 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C2054 & 0160-7736 & & CAP-FXD 1uF + -10\% 16 V CER X7S & 06352 & C3216X7R1C105K \\
\hline C2055-C2056 & 0180-4538 & & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline CR101 & 1906-0291 & 17 & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR301 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR601-CR602 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR603 & 1906-0334 & 1 & DIODE-200V 200MA & 02237 & 3K49 \\
\hline CR604 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR701-CR702 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR801 & 1900-0245 & 1 & DIODE-SCHOTTKY SM SIG & 02364 & HSMS-2805 \\
\hline CR802 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR901 & 0122-0374 & 1 & DIO VAR 2 X OT23 & 02865 & SMV1255-004 \\
\hline CR1001 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR1101 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR1301 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR1501 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR1601-CR1602 & 1900-0321 & 2 & DIODE-PAIR MATCHED & 02364 & HSMS-2865 \\
\hline CR1801 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR1901 & 1902-1512 & 1 & DIODE-ZNR 7.5V 5\% TO-236 (SOT-23) & 02910 & BZX84C7V5 \\
\hline CR1902-CR1903 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR1904-CR1906 & 1902-1487 & 3 & DIODE-ZENER 12V 5\% TO 236 & 02910 & BZX84-C12 \\
\hline CR2001 & 1901-1582 & 3 & DIO-PWR-S & 36633 & MBR0530T1 \\
\hline CR2002 & 1901-1332 & 3 & DIODE-PWR-S 40V 1A & 02037 & MBRS 140 T3 \\
\hline CR2003 & 1901-1335 & 2 & DIO-PWR RECT W/CURRENT >5A & 36633 & MURS140T3 \\
\hline CR2004 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline CR2005 & 1901-1335 & & DIO-PWR RECT W/CURRENT >5A & 36633 & MURS140T3 \\
\hline CR2006 & 1901-1582 & & DIO-PWR-S & 36633 & MBR0530T1 \\
\hline CR2007 & 1901-1332 & & DIODE-PWR-S 40V 1A & 02037 & MBRS140T3 \\
\hline CR2008 - CR2010 & 1906-0395 & 3 & DIODE-DUAL 75V TO-253 & 02910 & BAS28 \\
\hline CR2011 & 1901-1582 & & DIO-PWR-S & 36633 & MBR0530T1 \\
\hline CR2012 & 1901-1332 & & DIODE-PWR-S 40V 1A & 02037 & MBRS140T3 \\
\hline CR2013 & 1906-0291 & & DIODE-DUAL 70 V 100MA T0-236AA & 02910 & BAV99 \\
\hline HS1901 & 1251-5613 & 1 & CONN-SGL CONT & 01380 & 62409-1 \\
\hline J101 & 1252-1325 & 2 & CONN-POST-TP-HDR & 04726 & N2510-6002UB \\
\hline J102 & 1252-2161 & 1 & CONN-RECT MICRORBN 24-CKT 24-CONT & 01380 & 554923-2 \\
\hline J401 & 1252-8157 & 1 & CONN_FFC_VERT_FEM_40PIN_FP_SMT & 03418 & 52559-4092 \\
\hline J601 & 1250-2886 & 4 & CONN_RF_BNC_RA & 05879 & 456 \\
\hline J801- J802 & 1250-2886 & & CONN_RF_BNC_RA & 05879 & 456-117 \\
\hline J803 & 1252-1325 & & CONN-POST-TP-HDR & 04726 & N2510-6002UB \\
\hline J1001 & 1250-2886 & & CONN_RF_BNC_RA & 05879 & 456-117 \\
\hline J1501 & 1250-0257 & 2 & CONN-RF SMB & 01380 & 5162-5021-09 \\
\hline J1901 & 1250-0257 & & CONN-RF SMB & 01380 & 5162-5021-09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline J2001 & 1251-5066 & 1 & CONN-POST TYPE 2.5-PIN-SPCG-MTG-END & 03418 & 22-04-1021 \\
\hline K1701 & 0490-1937 & 5 & RELAY 2C 3VDC-COIL 1A 125VAC & 00467 & G6HU-2-100-DC3 \\
\hline K1801 & 0490-1937 & & RELAY 2C 3VDC-COIL 1A 125VAC & 00467 & G6HU-2-100-DC3 \\
\hline K1901-K1903 & 0490-1937 & & RELAY 2C 3VDC-COIL 1A 125VAC & 00467 & G6HU-2-100-DC3 \\
\hline K1904-K1905 & 0490-1638 & 2 & RELAY 2C 5VDC-COIL 1A 125VAC & 01850 & TQ2E-5V \\
\hline K2001 & 0490-2653 & 1 & RELAY 2C 12VDC-COIL 2A LOW-SIGNAL & 00467 & G6SK-2F-DC12 \\
\hline L201-L203 & 9170-1584 & 63 & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L401-L402 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L403 & 9170-1739 & 1 & CORE-SHIELDING BEAD & 11702 & FBMH4532HM681 \\
\hline L501 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L601 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L602-L606 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L701-L703 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L801-L804 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L805 & 9140-2501 & 4 & IDCTR 120nH 2\% SMT 400MA 0805 & 01886 & 0805HS-121TGBC \\
\hline L901 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L902 & 9140-1200 & 2 & INDUCTOR 33nH +-5\% 2.8W-mmX3.4LG-mm Q=25 & 09891 & KL32TE033J \\
\hline L903-L904 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1001 & 9140-2501 & & IDCTR 120nH 2\% SMT 400MA 0805 & 01886 & 0805HS-121TGBC \\
\hline L1002-L1006 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1101 & 9140-1099 & 1 & INDUCTOR 220nH +-5\% 2.8W-mmX3.4LG-mm & 09891 & KL32TER22J \\
\hline L1102-L1110 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1501-L1503 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1504 & 9140-1200 & & INDUCTOR 33nH +-5\% 2.8W-mmX3.4LG-mm Q=25 & 09891 & KL32TE033J \\
\hline L1506-L1507 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1601-L1602 & 9170-1678 & 7 & CORE-SHIELDING BEAD,FERRITE,NOT TRANSF & 11702 & FBMJ3216HS800-T \\
\hline L1701 & 9140-2501 & & IDCTR 120nH 2\% SMT 400MA 0805 & 01886 & 0805HS-121TGBC \\
\hline L1702 & 9140-2503 & 2 & IDCTR 100nH 2\% SMT 400MA 0805 & 01886 & 0805HS-101TGBC \\
\hline L1703 & 9140-2502 & 4 & IDCTR 82nH 2\% SMT 400MA 0805 & 01886 & 0805HS-820TGBC \\
\hline L1704 & 9140-2503 & & IDCTR 100nH 2\% SMT 400MA 0805 & 01886 & 0805HS-101TGBC \\
\hline L1705 & 9140-2509 & 1 & IDCTR 180nH 2\% SMT 400MA 0805 & 01886 & 0805HS-181TGBC \\
\hline L1706 & 9140-2500 & 1 & IDCTR 56nH 2\% SMT 500MA 0805 & 01886 & 0805HS-560TGBC \\
\hline L1707-L1708 & 9140-2502 & & IDCTR 82nH 2\% SMT 400MA 0805 & 01886 & 0805HS-820TGBC \\
\hline L1709 & 9140-2501 & & IDCTR 120nH 2\% SMT 400MA 0805 & 01886 & 0805HS-121TGBC \\
\hline L1710 & 9140-2502 & & IDCTR 82nH 2\% SMT 400MA 0805 & 01886 & 0805HS-820TGBC \\
\hline L1711-L1714 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1715 & 9140-1100 & 1 & INDUCTOR 330nH +-5\% 2.8W-mmX3.4LG-mm & 09891 & KL32TER33J \\
\hline L1716-L1718 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1801 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1802 & 9170-1678 & & CORE-SHIELDING BEAD,FERRITE,NOT TRANSF & 11702 & FBMJ3216HS800-T \\
\hline L1803-L1804 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1805 & 9170-1678 & & CORE-SHIELDING BEAD,FERRITE,NOT TRANSF & 11702 & FBMJ3216HS800-T \\
\hline L1806 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1901-L1904 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1905 & 9170-1678 & & CORE-SHIELDING BEAD,FERRITE,NOT TRANSF & 11702 & FBMJ3216HS800-T \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline L1906 & 9140-1240 & 1 & INDUCTOR 47uH +-5\% 2.8W-mmX3.4LG-mm Q=30 & 06352 & NL322522T-470J \\
\hline L1907 & 9140-2498 & 2 & IDCTR 105nH THT SHIELDED & 01886 & X8088-A \\
\hline L1908 & 9140-2499 & 1 & IDCTR 179nH 5\% THT SHIELDED & 01886 & X8089-A \\
\hline L1909 & 9140-2498 & & IDCTR 105nH THT SHIELDED & 01886 & X8088-A \\
\hline L1910 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L1911-L1912 & 9170-1678 & & CORE-SHIELDING BEAD,FERRITE,NOT TRANSF & 11702 & FBMJ3216HS800-T \\
\hline L1913-L1917 & 9170-1584 & & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline L2001 & 9170-1663 & 9 & CORE-SHIELDING BEAD & 11702 & FBMH4532HM132 \\
\hline L2002 & 9140-2512 & 1 & IDCTR 150uH 20\% 0.6ASMT & 01886 & DT3316P-154 \\
\hline L2003 & 9140-2504 & 1 & IDCTR 330uH 20\% SMT 200MA & 01886 & DS1608C-334 \\
\hline L2004-L2006 & 9170-1663 & & CORE-SHIELDING BEAD & 11702 & FBMH4532HM132 \\
\hline L2007 & 9140-1904 & 3 & INDUCTOR 3.3uH +20\%-20\% & 01886 & DT3316P-332 \\
\hline L2008-L2009 & 9170-1663 & & CORE-SHIELDING BEAD & 11702 & FBMH4532HM132 \\
\hline L2010 & 9140-2108 & 2 & L SMT 10UH 20\% 4.8A SLF12565 & 06352 & CDRH127-100MC \\
\hline L2011-L2013 & 9170-1663 & & CORE-SHIELDING BEAD & 11702 & FBMH4532HM132 \\
\hline L2014 & 9140-1904 & & INDUCTOR 3.3uH +20\%-20\% & 01886 & DT3316P-332 \\
\hline L2015 & 9140-2108 & & L SMT 10UH 20\% 4.8A SLF12565 & 06352 & CDRH127-100MC \\
\hline L2016 & 9140-1904 & & INDUCTOR 3.3uH +20\%-20\% & 01886 & DT3316P-332 \\
\hline MAJ102 & 33120-00614 & 2 & SHIELD - RFI & 02362 & 33120-00614 \\
\hline MAJ1501 & 3050-1557 & 4 & WASHER - FLAT & 05313 & 5606-4-31 \\
\hline MAJ1901 & 3050-1557 & & WASHER - FLAT & 05313 & 5606-4-31 \\
\hline MBJ102 & 0380-0643 & 2 & STANDOFF-HEX .255-IN-LG 6-32-THD & 02121 & 0380-0643 \\
\hline MCJ102 & 0380-0643 & & STANDOFF-HEX .255-IN-LG 6-32-THD & 02121 & 0380-0643 \\
\hline MDJ102 & 2190-0577 & 3 & WASHER- NO. \(10.194-\) IN-ID \(.294-I N-O D\) & 03118 & 2190-0577 \\
\hline MEJ102 & 2190-0577 & & WASHER- NO. \(10.194-\) IN-ID \(.294-I N-O D\) & 03118 & 2190-0577 \\
\hline MFJ102 & 2190-0577 & & WASHER- NO. \(10.194-I N-I D .294-I N-O D\) & 03118 & 2190-0577 \\
\hline MP2 & 0590-1397 & 1 & THD INSR-STAINLESS STEEL & 03981 & KFS2-M4 \\
\hline P801 & 33250-61616 & 1 & CABLE, 10 POS. PA & 02364 & 33250-61616 \\
\hline P2001 & 33250-61605 & 1 & CABLE, POWER SUPPLY & 02364 & 33250-61605 \\
\hline Q401 & 1855-0734 & 7 & TRANSISTOR,SRFCE MNTD,225mW,1 MHZ & 02883 & 2N7002 \\
\hline Q801 & 1853-0580 & 2 & TRANSISTOR PNP SI SOT-23 (TO-236AB) & 12125 & KST4403 \\
\hline Q802 & 1855-0734 & & TRANSISTOR,SRFCE MNTD, \(225 \mathrm{~mW}, 1 \mathrm{MHZ}\) & 02883 & 2N7002 \\
\hline Q901 & 1853-0580 & & TRANSISTOR PNP SI SOT-23 (TO-236AB) & 12125 & KST4403 \\
\hline Q1001 & 1853-0568 & 3 & TRANSISTOR PNP SI TO-236AA PD=350MW & 36633 & MMBT5087LT1 \\
\hline Q1501 & 1853-0568 & & TRANSISTOR PNP SI TO-236AA PD=350MW & 36633 & MMBT5087LT1 \\
\hline Q1601 & 1853-0516 & 2 & TRANSISTOR PNP SI SOT-23 (TO-236AB) & 02237 & MMBTH81 \\
\hline Q1602 - Q1606 & 1854-1148 & 6 & TRANSISTOR NPN SI SOT-23 (TO-236AB) & 02237 & MMBTH10 \\
\hline Q1607 & 1853-0516 & & TRANSISTOR PNP SI SOT-23 (TO-236AB) & 02237 & MMBTH81 \\
\hline Q1608 & 1854-1148 & & TRANSISTOR NPN SI SOT-23 (TO-236AB) & 02237 & MMBTH10 \\
\hline Q1901 - Q1902 & 1855-0734 & & TRANSISTOR,SRFCE MNTD, 225mW, 1 MHZ & 02883 & 2N7002 \\
\hline Q2001 - Q2003 & 1855-0997 & 5 & TRANSISTOR MOSFET N-CHAN E-MODE SI & 02883 & SI4410DY \\
\hline Q2004 & 1853-0568 & & TRANSISTOR PNP SI TO-236AA PD=350MW & 36633 & MMBT5087LT1 \\
\hline Q2005 & 1855-0997 & & TRANSISTOR MOSFET N-CHAN E-MODE SI & 02883 & SI4410DY \\
\hline Q2006 & 1855-0734 & & TRANSISTOR,SRFCE MNTD, 225mW, 1 MHZ & 02883 & 2N7002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline Q2007 & 1855-0997 & & TRANSISTOR MOSFET N-CHAN E-MODE SI & 02883 & SI4410DY \\
\hline Q2008 - Q2009 & 1855-0734 & & TRANSISTOR,SRFCE MNTD, 225 mW , 1 MHZ & 02883 & 2N7002 \\
\hline R101 & 0699-3051 & 161 & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R102 & 0699-2977 & 5 & RES 681 1\%.1W & 05524 & CRCW08056810F \\
\hline R103 & 0699-3034 & 46 & RESISTOR \(1 \mathrm{~K}+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R104 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R105 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R106 & 0699-3058 & 89 & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R107 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R108 & 0699-3053 & 24 & RESISTOR 100K \(+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R109 & 0699-3077 & 7 & RESISTOR 1M +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline R110-R111 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R112 & 0699-3035 & 3 & RESISTOR 1.47K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051471F \\
\hline R113-R114 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R115 & 0699-2965 & 12 & RESISTOR \(46.4 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08054642F \\
\hline R116 & 0699-3073 & 2 & RESISTOR \(51.1 \mathrm{~K}+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 00746 & MCR10-F-5112 \\
\hline R117 & 0699-2965 & & RESISTOR 46.4K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08054642F \\
\hline R118 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R119 & 0699-2965 & & RESISTOR \(46.4 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08054642F \\
\hline R120-R126 & 0699-2965 & & RESISTOR \(46.4 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08054642F \\
\hline R201 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R202-R206 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R207 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R208 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R209-R217 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R218 & 0699-2643 & 1 & RESISTOR \(0+-5 \%\).1W TKF TC=0+-300 & 00746 & MCR10-J-000 \\
\hline R219 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R220-R221 & 0699-3053 & & RESISTOR 100K \(+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R222-R223 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R224-R225 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R226 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R227-R235 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R301-R306 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R307 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R308 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R310 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R313-R320 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R321-R336 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R337-R338 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R339-R340 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R341 & 0699-2977 & & RES 681 1\%.1W & 05524 & CRCW08056810F \\
\hline R342-R347 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R401 & 0699-3773 & 1 & RESISTOR 20.5K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-2052 \\
\hline R402 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R403 & 0699-3063 & 3 & RESISTOR 825 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08058250F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & \[
\begin{array}{|l|}
\hline \text { Agilent Part } \\
\text { Number }
\end{array}
\] & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R404-R405 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R406-R407 & 0699-3063 & & RESISTOR \(825+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08058250F \\
\hline R408 & 0699-3073 & & RESISTOR \(51.1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-5112 \\
\hline R409-R410 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R411 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R412-R413 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R414 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R415 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R416-R417 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R418 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R419-R425 & 0699-3058 & & RESISTOR \(100+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R501-R505 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R506-R507 & 0699-3058 & & RESISTOR \(100+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R508-R529 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R530 & 0699-3058 & & RESISTOR \(100+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R531 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R532-R533 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R534 & 0699-3832 & 19 & RESISTOR 51.1 +-1\% .1W TKF TC=0+-100 & 00746 & CR10-F-51R1 \\
\hline R601 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R602 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R603 & 0699-2828 & 1 & RESISTOR 1.5K +-0.1\% .125W TF TC=0+-25 & 01172 & BLU-1206 1K5.1\% 25PPM \\
\hline R604 & 0699-2490 & 1 & RESISTOR \(1 \mathrm{~K}+-0.1 \%\). 125 W TF TC=0+-25 & 01172 & BLU-1206 1K.1\% 25PPM \\
\hline R605 & 1810-1854 & 1 & NET-RES 0 10.0K OHM & 05524 & MPM2002AT \\
\hline R606 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R607 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R608 & 0699-3058 & & RESISTOR \(100+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R609 & 0699-3077 & & RESISTOR 1M + -1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline R610 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R611 & 0699-2840 & 2 & RESISTOR 2.5K + -0.1\% .125W TF TC=0+-25 & 02499 & W1206R032501BT \\
\hline R612 & 0699-2998 & 2 & RESISTOR 162K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051623F \\
\hline R613 & 0699-3829 & 1 & RESISTOR \(38.3+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080538R3FRT2 \\
\hline R614 & 0699-2840 & & RESISTOR 2.5K +-0.1\% .125W TF TC=0+-25 & 02499 & W1206R032501BT \\
\hline R615 & 0699-3061 & 6 & RESISTOR 261 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052610F \\
\hline R616 & 0699-4288 & 2 & RESISTOR 68 +-5\% 1W TKF TC=0+-200 & 00746 & MCR100-J-68R0 \\
\hline R617 & 0699-3058 & & RESISTOR \(100+\)-1\% . 1 W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R618 & 0699-2823 & 1 & RESISTOR \(8 \mathrm{~K}+-0.1 \%\). 125 W TF TC= \(=0+-25\) & 02499 & W1206R038001BT \\
\hline R619 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R620 & 0699-2847 & 1 & RESISTOR \(2 \mathrm{~K}+-0.1 \%\). 125 W TF TC \(=0+-25\) & 01172 & BLU-1206 2K.1\% 25PPM \\
\hline R621 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R622-R623 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R624-R625 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R626 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R627 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R628-R629 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R630 & 0699-2975 & 3 & RESISTOR \(562+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055620F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R631 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R632 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R633 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R634 & 0699-3069 & 7 & RESISTOR 19.6K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline R635 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R636 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R637 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R701 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R702 & 0699-3479 & 4 & RESISTOR 40.2K +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A4022F \\
\hline R703-R704 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R705-R706 & 0699-3032 & 15 & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R707-R708 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R709 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R710 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R711 & 0699-3029 & 19 & RESISTOR \(316+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R712 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R713 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R714 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R715-R716 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R717 & 0699-3075 & 2 & RESISTOR 147K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051473F \\
\hline R718 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R719 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R720 & 0699-2995 & 1 & RESISTOR 110K \(+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051103F \\
\hline R721-R722 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R723 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R724 & 0699-3479 & & RESISTOR 40.2K +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A4022F \\
\hline R725 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R726 & 0699-3479 & & RESISTOR 40.2K +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A4022F \\
\hline R727 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R728 & 0699-2987 & 1 & RESISTOR 23.7K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052372F \\
\hline R729 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R730 & 0699-3828 & 2 & RESISTOR \(21.5+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080521R5FRT \\
\hline R731 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R732 & 0699-3075 & & RESISTOR 147K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051473F \\
\hline R733 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R734 & 0699-3479 & & RESISTOR 40.2K +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A4022F \\
\hline R735-R739 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R801 & 0699-4288 & & RESISTOR 68 +-5\% 1W TKF TC=0+-200 & 05524 & CRCW2512680J \\
\hline R802 & 0699-2979 & 5 & RESISTOR 1.21K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051211F \\
\hline R803 & 0699-2998 & & RESISTOR 162K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051623F \\
\hline R804 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R805 & 0699-3037 & 6 & RESISTOR 2.15K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052151F \\
\hline R806 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R807 & 0699-3037 & & RESISTOR 2.15K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052151F \\
\hline R808 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R809 & 0699-3834 & 109 & RESISTOR \(68.1+-1 \% .1 W\) TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R810 & 0699-3077 & & RESISTOR 1M +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline R811 & 0699-2976 & 2 & RESISTOR \(619+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08056190F \\
\hline R812 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R813 & 0699-3038 & 2 & RESISTOR 2.37K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-2371 \\
\hline R814 & 0699-2971 & 12 & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R815 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R816 & 0699-3032 & & RESISTOR \(511+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R817 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R818 & 0699-3033 & 1 & RESISTOR \(750+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08057500F \\
\hline R819-R820 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R821 & 0699-2972 & 3 & RESISTOR \(178+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051780F \\
\hline R822 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R823 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R824 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R901 & 0699-3053 & & RESISTOR 100K \(+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R902 & 0699-3037 & & RESISTOR 2.15K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052151F \\
\hline R903 & 0699-2986 & 3 & RESISTOR 21.5K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052152F \\
\hline R904 & 0699-3037 & & RESISTOR 2.15K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052151F \\
\hline R905 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R906 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R907 & 0699-2988 & 3 & RESISTOR 31.6K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053162F \\
\hline R908 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R909 & 0699-2986 & & RESISTOR 21.5K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052152F \\
\hline R910 & 0699-3058 & & RESISTOR & 05524 & CRCW08051000F \\
\hline R911 & 0699-2988 & & RESISTOR 31.6K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053162F \\
\hline R912 & 0699-2965 & & RESISTOR 46.4K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08054642F \\
\hline R913 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R914 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R915 & 0699-3844 & 15 & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R916 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R917 & 0699-3834 & & RESISTOR \(68.1+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R918-R919 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R920 & 0699-3067 & 3 & RESISTOR 14.7K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051472F \\
\hline R921 & 0699-2988 & & RESISTOR 31.6K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053162F \\
\hline R923 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R924 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R925-R926 & 0699-2972 & & RESISTOR \(178+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051780F \\
\hline R927-R928 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R929-R930 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R931-R932 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R933-R939 & 0699-3064 & 49 & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R940-R946 & 0699-3631 & 50 & RESISTOR \(301+-1 \%\). 1 W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1001-R1002 & 0699-3045 & 8 & RESISTOR \(5.11 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-5111 \\
\hline R1003 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R1004-R1005 & 0699-3045 & & RESISTOR 5.11K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-5111 \\
\hline R1006 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1007-R1008 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1009 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1010 & 0699-3834 & & RESISTOR 68.1+-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1011-R1012 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1013 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1014 & 0699-2975 & & RESISTOR \(562+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055620F \\
\hline R1015-R1016 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1017 & 0699-3739 & 2 & RESISTOR 47 +-5\% .5W TKF TC=0+-200 & 00746 & MCR50-J-470 \\
\hline R1018 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1019 & 0699-3067 & & RESISTOR 14.7K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051472F \\
\hline R1020 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1021 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1022 & 0699-2975 & & RESISTOR \(562+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055620F \\
\hline R1023 & 0699-3832 & & RESISTOR \(51.1+-1 \% .1\) W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1024 & 0699-3834 & & RESISTOR 68.1 +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1025 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R1026 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1027-R1028 & 0699-3834 & & RESISTOR 68.1+-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1029-R1030 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1031-R1032 & 0699-3030 & 7 & RESISTOR \(383+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053830F \\
\hline R1033-R1039 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1040 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1041 & 0699-3045 & & RESISTOR \(5.11 \mathrm{~K}+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 00746 & MCR10-F-5111 \\
\hline R1042 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1043 & 0699-2981 & 2 & RESISTOR 1.78K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051781F \\
\hline R1044 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1045 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1046 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R1047 & 0699-2992 & 2 & RESISTOR 75K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-7502 \\
\hline R1048-R1049 & 0699-3049 & 3 & RESISTOR 8.25K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08058251F \\
\hline R1050 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1051 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1052 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1101 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1102 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1103 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1104 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1105 & 0699-3834 & & RESISTOR 68.1--1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1106 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1107 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1108-R1110 & 0699-3030 & & RESISTOR \(383+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053830F \\
\hline R1112-R1113 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R1114 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1115-R1117 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & \[
\begin{array}{|l|}
\hline \text { Agilent Part } \\
\quad \text { Number }
\end{array}
\] & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R1118 & 0699-3834 & & RESISTOR 68.1 +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1119-R1122 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1123-R1127 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1128 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1129-R1130 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R1131-R1132 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1133-R1134 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R1135-R1136 & 0699-3058 & & RESISTOR \(100+-1 \% .1 W\) TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1137-R1138 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1139 & 0699-3844 & & RESISTOR \(42.2+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080542R2FRT2 \\
\hline R1140-R1141 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1142 & 0699-3029 & & RESISTOR 316 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1143-R1147 & 0699-3064 & & RESISTOR \(909+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1148-R1152 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1153-R1158 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1159 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1160 & 0699-3834 & & RESISTOR 68.1 +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1161-R1162 & 0699-3841 & 6 & RESISTOR \(23.7+\) +1\% .1W TKF TC=0+-100 & 09891 & RK73H2A23R7F \\
\hline R116 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & CR10-F-68R1 \\
\hline R1164 & 0699-3841 & & RESISTOR 23.7 +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A23R7F \\
\hline R1165-R1168 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1169 & 0699-3841 & & RESISTOR \(23.7+\) +1\% .1W TKF TC=0+-100 & 09891 & RK73H2A23R7F \\
\hline R1170 & 0699-3834 & & RESISTOR 68.1 +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1201-R1205 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1206 & 0699-3058 & & RESISTOR \(100+-1 \% .1\) W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1207 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+\) +1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1208-R1209 & 0699-3058 & & RESISTOR \(100+-1 \% .1\) W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1210 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+\) +1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1211-R1222 & 0699-3051 & & RESISTOR 10K \(+1 \%\). 1 W TKF TC= \(0+-100\) & 00746 & MCR10-F-1002 \\
\hline R1223-R1225 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1301-R1302 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1303 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1304-R1305 & 0699-3051 & & RESISTOR 10K + -1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1400 & 0699-3064 & & RESISTOR \(909+-1 \% .1 W\) TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1401 & 0699-3029 & & RESISTOR 316 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1402-R1413 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1414-R1416 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1417-R1428 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1429-R1436 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1437-R1448 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1449-R1454 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1455-R1466 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1467-R1480 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1481-R1482 & 0699-3832 & & RESISTOR \(51.1+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1483-R1499 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1501-R1502 & 0699-3834 & & RESISTOR 68.1 +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R1503-R1504 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1505-R1506 & 0699-3834 & & RESISTOR \(68.1+-1 \% .1\) W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1507-R1508 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1509 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1510 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R1511-R1512 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1513 & 0699-3739 & & RESISTOR \(47+-5 \%\). 5W TKF TC=0+-200 & 00746 & MCR50-J-470 \\
\hline R1514-R1515 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1516-R1517 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1518 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1519-R1522 & 0699-3834 & & RESISTOR 68.1+-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1523 R1524 & 0699-3035 & & RESISTOR 1.47K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051471F \\
\hline R1525 & 0699-3845 & 1 & RESISTOR,FIXED, .1W, SMT, FLAT CHIP & 00746 & MCR10-F-61R9 \\
\hline R1526-R1528 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1529-R1530 & 0699-3631 & & RESISTOR \(301+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A3010F \\
\hline R1531-R1532 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1533 & 0699-3828 & & RESISTOR \(21.5+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW080521R5FRT \\
\hline R1534 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1535 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1536 & 0699-3834 & & RESISTOR 68.1--1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1537 & 0699-3051 & & RESISTOR 10K \(+-1 \%\). 1 W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1538-R1539 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1540 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1541 & 0699-2981 & & RESISTOR 1.78K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051781F \\
\hline R1542 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1543 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1544-R1545 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1546 & 0699-3053 & & RESISTOR 100K + -1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R1547 & 0699-2992 & & RESISTOR 75K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-7502 \\
\hline R1548-R1550 & 0699-3046 & 4 & RESISTOR 6.19K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-6191 \\
\hline R1551 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1552 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1553-R1554 & 0699-4451 & 2 & RESISTOR 2.2 +-5pct .1W TKF TC=0+-500 & 00746 & MCR10-J-2R2 \\
\hline R1601 & 0699-3049 & & RESISTOR 8.25K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08058251F \\
\hline R1602-R1603 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1604 & 0699-3038 & & RESISTOR 2.37K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-2371 \\
\hline R1605-R1606 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1607 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1608 & 0699-3841 & & RESISTOR \(23.7+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A23R7F \\
\hline R1609 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1610 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1611 & 0699-3069 & & RESISTOR 19.6K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline R1612 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1613 & 0699-2976 & & RESISTOR \(619+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08056190F \\
\hline R1614 & 0699-3061 & & RESISTOR \(261+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08052610F \\
\hline R1615 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R1616 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1617-R1618 & 0699-3058 & & RESISTOR \(100+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1619 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1620 & 0699-3061 & & RESISTOR \(261+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08052610F \\
\hline R1621 & 0699-3032 & & RESISTOR \(511+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1622 & 0699-2977 & & RES 681 1\%.1W & 05524 & CRCW08056810F \\
\hline R1623-R1626 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R1627 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1628 & 0699-3029 & & RESISTOR \(316+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1629 & 0699-3061 & & RESISTOR \(261+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08052610F \\
\hline R1630 & 0699-3846 & 1 & RESISTOR 75 +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-75R0 \\
\hline R1631 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1632 & 0699-3061 & & RESISTOR \(261+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08052610F \\
\hline R1633 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1634-R1637 & 0699-3053 & & RESISTOR 100K \(+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R1638 & 0699-3061 & & RESISTOR \(261+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08052610F \\
\hline R1639 & 0699-3069 & & RESISTOR 19.6K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline R1640 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1641 & 0699-3841 & & RESISTOR \(23.7+-1 \%\).1W TKF TC=0+-100 & 09891 & RK73H2A23R7F \\
\hline R1642-R1645 & 0699-2979 & & RESISTOR \(1.21 \mathrm{~K}+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051211F \\
\hline R1646-R1647 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1648-R1649 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1701-R1709 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1710-R1711 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1712-R1715 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1716 & 0699-3058 & & RESISTOR \(100+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1717 & 0699-3832 & & RESISTOR \(51.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1718 & 0699-3834 & & RESISTOR \(68.1+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-68R1 \\
\hline R1719 & 0699-3836 & 1 & RESISTOR \(90.9+-1 \%\).1W TKF TC=0+-100 & 00746 & MCR10-F-90R9 \\
\hline R1720 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1721 & 0699-3058 & & RESISTOR \(100+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1722 & 0699-2973 & 1 & RES 215, FIXED THIN FILM & 00746 & MCR10-F-2150 \\
\hline R1723 & 0699-3604 & 1 & RESISTOR \(909+-0.1 \%\).125W TF TC=0+-25 & 02499 & W1206R03-9090B \\
\hline R1724 & 0699-3766 & 1 & RESISTOR \(232+-0.1 \%\).125W TF TC=0 + -25 & 01172 & BLU-1206 2320.1\% 25PPM \\
\hline R1725 & 0699-2489 & 1 & RESISTOR 10K \(+-0.1 \%\). 125 W TF TC=0+-25 & 01172 & BLU-1206 10K .1\% 25PPM \\
\hline R1726 & 0699-3037 & & RESISTOR 2.15K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052151F \\
\hline R1727 & 0699-1447 & 1 & RESISTOR 261K +-1\% .125W TKF TC=0+-100 & 09891 & RK73H2BT2613F \\
\hline R1728 & 0699-3575 & 1 & RESISTOR 75 +-0.1\% .125W TF TC=0+-25 & 01172 & BLU-1206 75R .1\% 25PPM \\
\hline R1729 & 0699-3054 & 1 & RES 287K 1\% .1W & 05524 & CRCW08052873F \\
\hline R1730 & 0699-2848 & 1 & RESISTOR \(18 \mathrm{~K}+-0.1 \%\). 125 W TF TC=0+-25 & 01172 & BLU-1206 18K .1\% 25PPM \\
\hline R1731 & 0699-3058 & & RESISTOR \(100+-1 \% .1 \mathrm{~W}\) TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R1732 & 0699-3040 & 2 & RESISTOR 3.16K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-3161 \\
\hline R1733 & 0699-3032 & & RESISTOR 511 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1801 & 0699-2887 & 1 & RESISTOR \(31.6+-1 \%\).1W TKF & 00746 & MCR10-F-31R6 \\
\hline R1802 & 0699-2963 & 1 & RESISTOR \(121+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051210F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R1803-R1804 & 0699-1356 & 2 & RESISTOR 31.6 +-1\% .125W TKF TC=0+-100 & 09891 & RK73H2BT31R6F \\
\hline R1805 & 0699-3032 & & RESISTOR \(511+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08055110F \\
\hline R1806 & 0699-3029 & & RESISTOR \(316+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08053160F \\
\hline R1807 & 0699-3042 & 5 & RESISTOR 3.83K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053831F \\
\hline R1808 & 0699-3052 & 1 & RESISTOR \(12.1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051212F \\
\hline R1809 & 0699-3030 & & RESISTOR \(383+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08053830F \\
\hline R1810 & 0699-3069 & & RESISTOR 19.6K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline R1811 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1901 & 0699-2855 & 1 & RESISTOR 9.09K +-0.1\% .125W TF TC=0+-25 & 01172 & BLU-1206 9K09 .1\% 25PPM \\
\hline R1902 & 0699-2842 & 1 & RESISTOR 38.3K +-0.1\% .125W TF TC=0+-25 & 02499 & W1206R033832BT \\
\hline R1903 & 0699-3698 & 1 & RESISTOR 10 +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A10R0F \\
\hline R1904 & 0699-3037 & & RESISTOR 2.15K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052151F \\
\hline R1905 & 0699-2986 & & RESISTOR 21.5K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052152F \\
\hline R1906 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R1907 & 0699-2989 & 1 & RESISTOR 38.3K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053832F \\
\hline R1908 & 0699-3042 & & RESISTOR 3.83K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053831F \\
\hline R1909 & 0699-2994 & 1 & RESISTOR 90.9K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-9092 \\
\hline R1910 & 0699-3064 & & RESISTOR \(909+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1911 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1912-R1914 & 0699-3212 & 3 & RESISTOR \(781+-0.1 \%\).125W TF TC=0+-25 & 05524 & TNPW12067810BT-9 \\
\hline R1915 & 0699-6232 & 1 & RESISTOR 90.9 0.1\% .100W TC=25 100V 0805 & 09891 & RN73E2A90R9B \\
\hline R1916 & 0699-6233 & 1 & R316 0.1\% 0805 & 09891 & RN73A3160B \\
\hline R1917-R1918 & 0699-6229 & 2 & R121 0.1\% 1206 & 00746 & RN73E2B1210B \\
\hline R1919 & 0699-6230 & 1 & R78.7 0.1\% 1206 & 09891 & RN73E2B78R7B \\
\hline R1920-R1921 & 0699-6231 & 2 & R154 0.1\% 1206 & 09891 & RN73E2B1540B \\
\hline R1922 & 0699-3042 & & RESISTOR 3.83K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053831F \\
\hline R1923 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1924 & 0699-3068 & 1 & RESISTOR 16.2K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051622F \\
\hline R1925 & 0699-3039 & 5 & RESISTOR \(2.61 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08052611F \\
\hline R1926 & 0699-3064 & & RESISTOR \(909+-1 \%\). 1 W TKF TC=0+-100 & 05524 & CRCW08059090F \\
\hline R1927 & 0699-3042 & & RESISTOR 3.83K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053831F \\
\hline R1928 & 0699-2962 & 3 & RESISTOR 68.1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08056812F \\
\hline R1929 & 0699-3740 & 2 & RESISTOR 3.32K +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A3321F \\
\hline R1930 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1931-R1934 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1935 & 0699-3039 & & RESISTOR 2.61K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052611F \\
\hline R1936 & 0699-2442 & 2 & RESISTOR \(2.2+-5 \%\).125W TKF TC=0+-200 & 09891 & RM73B2BT2R2J \\
\hline R1937 & 0699-2962 & & RESISTOR 68.1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08056812F \\
\hline R1938 & 0699-3832 & & RESISTOR \(51.1+-1 \% .1 W\) TKF TC=0+-100 & 00746 & MCR10-F-51R1 \\
\hline R1939 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1940 & 0699-3042 & & RESISTOR 3.83K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053831F \\
\hline R1941-R1942 & 0699-6917 & 4 & RESISTOR 49.9 OHM +-1\% 1W TF TC=0+-25 & 05524 & PTN2512E49R9FB \\
\hline R1943 & 0699-3048 & 2 & RESISTOR 7.5K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08057501F \\
\hline R1944-R1945 & 0699-6917 & & RESISTOR 49.9 OHM +-1\% 1W TF TC=0+-25 & 05524 & PTN2512E49R9FB \\
\hline R1946 & 0699-3069 & & RESISTOR 19.6K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R1947 & 0699-3077 & & RESISTOR 1M +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline R1948 & 0699-2491 & 2 & RESISTOR 20K \(+-0.1 \%\).125W TF TC=0+-25 & 02499 & W1206R032002BT \\
\hline R1949 & 0699-3048 & & RESISTOR \(7.5 \mathrm{~K}+\) +1\% .1W TKF TC=0+-100 & 05524 & CRCW08057501F \\
\hline R1950 & 0699-3039 & & RESISTOR \(2.61 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052611F \\
\hline R1951 & 0699-3045 & & RESISTOR \(5.11 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-5111 \\
\hline R1952 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R1953 & 0699-2962 & & RESISTOR \(68.1 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 05524 & CRCW08056812F \\
\hline R1954 & 0699-2971 & & RESISTOR, FIXED, .1W, SMT, FLAT CHIP & 05524 & CRCW08051470F \\
\hline R1955 & 0699-4284 & 1 & RESISTOR 2.1K \(+0.1 \%\).125W TF TC=0+-25 & 09891 & RN73E2B2101B \\
\hline R1956 & 0699-2442 & & RESISTOR \(2.2+-5 \%\).125W TKF TC=0+-200 & 09891 & RM73B2BT2R2J \\
\hline R1957 & 0699-3740 & & RESISTOR 3.32K + -1\% .1W TKF TC=0+-100 & 09891 & RK73H2A3321F \\
\hline R1959 & 2100-4198 & 1 & RESISTOR-TRMR 200 20\% TKF TOP-ADJ 1-TRN & 03744 & 3314G-1-201E \\
\hline R1960 & 0699-3069 & & RESISTOR 19.6K + -1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline R1961-R1962 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R2001 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R2002 & 0699-3530 & 1 & RESISTOR \(3.01 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 05524 & CRCW08053011F \\
\hline R2003 & 0699-3721 & 1 & RESISTOR 5.9K +-1\% .1W TKF TC=0+-100 & 09891 & RK73H2A5901F \\
\hline R2004 & 0699-3053 & & RESISTOR 100K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R2005 - R2006 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+\) +1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R2007 & 0699-3040 & & RESISTOR 3.16K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-3161 \\
\hline R2008 & 0699-3053 & & RESISTOR \(100 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R2009 & 0699-3058 & & RESISTOR 100 +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051000F \\
\hline R2010 & 0699-3053 & & RESISTOR \(100 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R2011 & 0699-3045 & & RESISTOR \(5.11 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-5111 \\
\hline R2012 & 0699-3053 & & RESISTOR \(100 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline R2013 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+\)-1\% . 1 W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R2014 & 0699-2977 & & RES 681 1\% .1W & 05524 & CRCW08056810F \\
\hline R2015 & 0699-3045 & & RESISTOR \(5.11 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-5111 \\
\hline R2016 & 0837-0487 & 1 & THERMISTOR RECT CHIP 5K-OHM & 05524 & NTHS-1006N-02-5K-5\% \\
\hline R2017 & 0699-3360 & 2 & RESISTOR . \(02+-1 \% .5 W\) TKF TC=0+-600 & 05524 & WSL2010.021\% \\
\hline R2018 & 0699-2491 & & RESISTOR 20K + -0.1\% .125W TF TC=0+-25 & 02499 & W1206R032002BT \\
\hline R2019 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R2020 & 0699-4311 & 2 & RESISTOR 11.3K.1\% 0805 100V .100W TC=25 & 01172 & BLU-0805 11.3K . \(1 \%\) 25PPM \\
\hline R2021 & 0699-3034 & & RESISTOR 1K +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R2022 & 0699-3049 & 1 & RESISTOR 8.25K +-1pct .1W TKF TC=0+-100 & 00746 & MCR10-FZHM-F-8251 \\
\hline R2023-R2024 & 0699-3076 & 2 & RESISTOR \(464 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08054643F \\
\hline R2025 & 0699-3067 & & RESISTOR 14.7K + -1\% .1W TKF TC=0+-100 & 05524 & CRCW08051472F \\
\hline R2026 & 0699-2965 & & RESISTOR 46.4K + -1\% .1W TKF TC=0+-100 & 05524 & CRCW08054642F \\
\hline R2027 & 0699-3039 & & RESISTOR \(2.61 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052611F \\
\hline R2028 & 0699-3077 & & RESISTOR 1M +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline R2029 & 0699-3360 & & RESISTOR . \(02+-1 \% .5 W\) TKF TC=0+-600 & 05524 & WSL2010.021\% \\
\hline R2030 & 0699-3039 & & RESISTOR \(2.61 \mathrm{~K}+\)-1\% .1W TKF TC=0+-100 & 05524 & CRCW08052611F \\
\hline R2031 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R2032 & 0699-3077 & & RESISTOR 1M + -1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline R2033 & 0699-3053 & & RESISTOR \(100 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051003F \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline R2034 & 0699-3046 & & RESISTOR 6.19K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-6191 \\
\hline R2035 & 0699-3051 & & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R2036 & 0699-2977 & & RES 681 1\%.1W & 05524 & CRCW08056810F \\
\hline R2037 & 0699-3069 & & RESISTOR 19.6K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1962 \\
\hline R2038 & 0699-4311 & & RESISTOR 11.3K .1\% 0805 100V .100W TC=25 & 01172 & BLU-0805 11.3K .1\% 25PPM \\
\hline R2039 & 0699-3008 & 1 & RESISTOR & 05524 & CRCW08055113F \\
\hline R2040 & 0699-2841 & 1 & RESISTOR 9K +-0.1\% .125W TF TC=0+-25 & 02499 & W1206R039001BT \\
\hline R2041-R2047 & 0699-3034 & & RESISTOR \(1 \mathrm{~K}+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051001F \\
\hline R2048 & 0699-3077 & & RESISTOR 1M +-1\% .1W TKF TC=0+-100 & 05524 & CRCW08051004F \\
\hline T101 & 9170-1629 & 4 & CORE-SHIELDING BEAD & 06352 & ACM4532-801-2P \\
\hline T601 & 9170-1629 & & CORE-SHIELDING BEAD & 06352 & ACM4532-801-2P \\
\hline T801 & 9100-4372 & 1 & & 02739 & T1-1-X65 \\
\hline T802 & 9170-1629 & & CORE-SHIELDING BEAD & 06352 & ACM4532-801-2P \\
\hline T1901 & 9170-1629 & & CORE-SHIELDING BEAD & 06352 & ACM4532-801-2P \\
\hline U101 & 1826-2264 & 1 & IC 34064 & 36633 & MC34064D-5R2 \\
\hline U102 & 1990-2050 & 4 & 40 NS PROP DELAY, SO-8 OPTOCOUPLER & 02364 & HCPL-0710 \\
\hline U103 & 1821-0055 & 1 & IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP & 36633 & MC74ACT132D \\
\hline U104 & 1820-7312 & 3 & IC SCHMITT-TRIG CMOS/ACT INV HEX & 01698 & SN74ACT14D \\
\hline U106 & 1820-6863 & 1 & IC-16550 & 03406 & PC16550DVX \\
\hline U107- U108 & 1821-0250 & 2 & IC-INTERFACE DRVR/RCVR CMOS INV EIA & 11302 & MAX232CWE \\
\hline U109 & 1821-1721 & 1 & IC-GPIB CONTROLLER & 01698 & MP9914FNL \\
\hline U110 & 1820-6175 & 1 & IC-INTERFACE XCVR BIPOLAR BUS OCTL & 01698 & SN75ALS162DW \\
\hline U111 & 1820-6176 & 1 & IC-INTERFACE XCVR BIPOLAR BUS OCTL & 01698 & SN75ALS160DW \\
\hline U201 & 1990-2050 & & 40 NS PROP DELAY, SO-8 OPTOCOUPLER & 02364 & HCPL-0710 \\
\hline U202 & 1821-0765 & 1 & IC-32-BIT CPU W/2K RAM,TPU,QSM & 02037 & MC68332ACFC20 \\
\hline U203-U204 & 1818-5651 & 2 & IC 4M-BIT SRAM \(70-\mathrm{NS} \mathrm{CMOS}\) & 12125 & KM684000BLG-7 \\
\hline U211 & 1818-8163 & 1 & 64KB FRAM & 14543 & FM1608S-180SI \\
\hline U212 & 1820-7312 & & IC SCHMITT-TRIG CMOS/ACT INV HEX & 01698 & SN74ACT14D \\
\hline U213 & 1820-5938 & 2 & IIC GATE CMOS/ACT NAND QUAD 2-INP & 01698 & SN74ACT00D \\
\hline U214 & 1813-1450 & 1 & CRYSTAL CLOCK OSCILLATOR & 09235 & F3345-18.000MHZ \\
\hline U215 & 1820-7312 & & IC SCHMITT-TRIG CMOS/ACT INV HEX & 01698 & SN74ACT14D \\
\hline U302 & 1821-2584 & 1 & EPF10K10QC208-4 & 12880 & EPF10K10QC208-4 \\
\hline U303- U304 & 1821-0299 & 4 & IC FF BICMOS/ABT D-TYPE POS-EDGE-TRIG & 01698 & 74ABT273DW \\
\hline U305- U306 & 1821-0308 & 2 & 74ACTQ273-FF,OCTAL,D-TYPE WL CLEAR & 02237 & 74ACTQ273SCX. \\
\hline U307- U308 & 1821-0299 & & IC FF BICMOS/ABT D-TYPE POS-EDGE-TRIG & 01698 & 74ABT273DW \\
\hline U401 & 1826-2198 & 1 & IC PWR MGT-V-REG-SWG 0/5V 16 PINS P-SOIC & 01698 & TL7770-5CDW \\
\hline U402 & 1821-4361 & 1 & IC INTF LCD CONTLR COLOR DOT MATRIX & 12768 & SED1353F0A \\
\hline U403 & 1818-6217 & 2 & IC SRAM, 1 MBIT, 15NS ACCESS & 10253 & IDT71016S15Y \\
\hline U501- U504 & 1821-0501 & 4 & IC TRANSCEIVER BICMOS/ABT BUS OCTL & 01698 & SN74AABT245BDB \\
\hline U505 & 1813-1448 & 1 & OSC 40.96MHZ 5V CMOS 100PPM SMT & 09235 & F3345-40.960MHZ \\
\hline U506 & 1821-2095 & 1 & IC D\&P 16BIT 25NS 2KRAM & 01698 & TMS320BC51PQ80 \\
\hline U507 & 1818-6217 & & IC SRAM, 1 MBIT, 15NS ACCESS & 10253 & IDT71016S15Y \\
\hline U601 & 1826-3045 & 1 & IC PWR MGT-V-REF-ADJ 2.5/3V 8 PINS & 03285 & AD780AR \\
\hline U602 & 1826-1925 & 1 & IC OP AMP LOW-NOISE SINGLE 8 PIN & 03285 & OP-27GS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline U603 & 1826-2147 & 5 & ANALOG MULTIPLEXER 8 CHNL 16 -P-SOIC & 02883 & DG408DY \\
\hline U604 & 1826-2176 & 4 & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 03285 & AD712JR \\
\hline U605 & 1813-1449 & 1 & Crystal-Clock Oscillator & 09235 & F3345-15.000MHZ \\
\hline U606 & 1826-6561 & 1 & IC-AD-16BPAR/SER-51G/DEL-EXT-AD7721AR & 03285 & AD7721AR \\
\hline U607 & 1826-2793 & 2 & D/A 16-BIT 16-P-SOIC BICMOS & 03285 & AD1851R \\
\hline U608 & 1820-4346 & 1 & IC MUXR/DATA-SEL CMOS/HC 2-TO-1-LINE TPL & 02910 & 74HC4053D \\
\hline U609 & 1826-2176 & & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 03285 & AD712JR \\
\hline U701 & 1826-6642 & 1 & D/A 14-BIT 14-SOIC +5 V SERIAL INPUT & 11302 & MAX545BCSD \\
\hline U702 & 1826-2176 & & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 03285 & AD712JR \\
\hline U703 & 1826-2147 & & ANALOG MULTIPLEXER 8 CHNL 16 -P-SOIC & 02883 & DG408DY \\
\hline U704 & 1826-1622 & 3 & IC OP AMP LOW-BIAS-H-IMPD QUAD 14 PIN & 01698 & TL074CD \\
\hline U705 & 1826-2176 & & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 03285 & AD712JR \\
\hline U706- U708 & 1826-2147 & & ANALOG MULTIPLEXER 8 CHNL 16 -P-SOIC & 02883 & DG408DY \\
\hline U801 & 1826-1734 & 1 & IC PWR MGT-V-REG-FXD-POS 4.8/5.2V 3 PINS & 01698 & UA78M05CKTP \\
\hline U802 & 1826-2387 & 1 & IC COMPARATOR HS 14 PIN PLSTC-SOIC & 02910 & NE529D \\
\hline U803 & 1813-1433 & 1 & TCXO 10 MHZ 5 V CMOS & 14847 & TV2045A-LX-1-10.000 \\
\hline U804 & 1820-5938 & & IC GATE CMOS/ACT NAND QUAD 2-INP & 01698 & SN74ACT00D \\
\hline U901 & 1827-0030 & 2 & IC FREQ-SYNTH 20 PIN PLSTC-TSSOP & 03406 & LMX2332LTM \\
\hline U902 & 1826-3184 & 5 & IC OP AMP LP 5 PIN PLSTC SOT23-5 & 03406 & LMC7101AIM5 \\
\hline U903 & 1813-1506 & 1 & PRECISION VCXO 797 to 803MHZ & 12685 & CLV0795E \\
\hline U904 & 1827-0030 & & IC FREQ-SYNTH 20 PIN PLSTC-TSSOP & 03406 & LMX2332LTM \\
\hline U905 & 1826-3184 & & IC OP AMP LP 5 PIN PLSTC SOT23-5 & 03406 & LMC7101AIM5 \\
\hline U906 & 1821-0459 & 2 & IC GATE ECL/10E AND-NAND 2-INP & 36633 & MC10EL05D \\
\hline U907 & 1820-7756 & 1 & IC MISC ECL/10E & 36633 & MC10E195FN \\
\hline U1001 & 1990-2050 & & 40 NS PROP DELAY, SO-8 OPTOCOUPLER & 02364 & HCPL-0710 \\
\hline U1002 & 1820-8770 & 1 & IC BFR CMOS/ACT NON-INV QUAD & 02237 & 74ACT125SCX. \\
\hline U1003 & 1990-2050 & & 40 NS PROP DELAY, SO-8 OPTOCOUPLER & 02364 & HCPL-0710 \\
\hline U1004 & 1826-3813 & 3 & IC-COMP SPT9687, DUAL HIGH-SPEED & 13735 & SPT9687SIS \\
\hline U1005 & 1820-5606 & 2 & IC GATE ECL/10KH AND QUAD 2-INP & 36633 & MC10H104FNR2 \\
\hline U1006 & 1826-1622 & & IC OP AMP LOW-BIAS-H-IMPD QUAD 14 PIN & 01698 & TL074CD \\
\hline U1007 & 1821-0442 & 3 & IC FF ECL/10E D-TYPE POS-EDGE-TRIG & 36633 & MC10EL31D \\
\hline U1008 & 1821-0882 & 1 & IC GATE ECL/10E & 36633 & MC10EL89D \\
\hline U1009 & 1826-2793 & & D/A 16-BIT 16-P-SOIC BICMOS & 03285 & AD1851R \\
\hline U1101 & 1821-0076 & 2 & IC RGTR ECL/0E 5-BIT & 36633 & MC10E452FN \\
\hline U1102-U1103 & 1821-0658 & 2 & IC DIVR ECL/10E DIV-X-4 & 36633 & MC10EL33D \\
\hline U1104 & 1821-0459 & & IC GATE ECL/10E AND-NAND 2-INP & 36633 & MC10EL05D \\
\hline U1105 & 1821-3534 & 1 & IC-MC10EL51D, FF, D-TYPE W/DIFF CLOCK & 36633 & MC10EL51D \\
\hline U1106 & 1821-1985 & 1 & IC-MC10E404FN, GATE, QUAD DIFF AND/NAND & 36633 & MC10E404FN \\
\hline U1107 & 1820-7650 & 2 & IC GATE ECL/10E AND-NAND QUINT 2-INP & 36633 & MC10E104FN \\
\hline U1108 & 1821-0442 & 3 & IC FF ECL/10E D-TYPE POS-EDGE-TRIG & 36633 & MC10EL31D \\
\hline U1109 & 1820-6946 & 2 & IC FF ECL/10E D-M/S POS-EDGE-TRIG COM & 36633 & MC10E131FN \\
\hline U1110 & 1821-0442 & & IC FF ECL/10E D-TYPE POS-EDGE-TRIG & 36633 & MC10EL31D \\
\hline U1111 & 1820-5390 & 3 & IC XLTR ECL/10KH ECL-TO-TTL QUAD & 36633 & MC10H125FN \\
\hline U1201 & 1821-8744 & 1 & IC PLD CPLD UNPRGMD CMOS 1K30 & 12880 & EP1K30FC256-3 \\
\hline U1202 & 1820-5940 & 1 & IC GATE CMOS/ACT AND QUAD 2-INP & 02237 & 74ACT08SCX \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & \[
\begin{array}{l|}
\hline \text { Agilent Part } \\
\text { Number }
\end{array}
\] & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline U1203 & 1826-8786 & 1 & IC PWR MGT-V-REG-LDO 2.5 V 8 PIN SOIC & 01698 & TPS77625D \\
\hline U1301-U1303 & 1821-3346 & 5 & IC MUXR/DATA-SEL CMOS 2-TO-1-LINE 2-INP & 01698 & SN74CBT16233DLR \\
\hline U1304-U1305 & 1818-8134 & 2 & SYNCH FAST STATIC RAM IC & 02037 & MCM69P618CTQ5R \\
\hline U1306-U1307 & 1821-3346 & & IC MUXR/DATA-SEL CMOS 2-TO-1-LINE 2-INP & 01698 & SN74CBT16233DLR \\
\hline U1401 & 1820-7650 & & IC GATE ECL/10E AND-NAND QUINT 2-INP & 36633 & MC10E104FN \\
\hline U1402-U1403 & 1821-0698 & 2 & IC XLTR ECL/10KH 6-BIT & 36633 & MC10H604FN \\
\hline U1404-U1407 & 1820-7647 & 4 & IC RGTR ECL/10E STOR 9-BIT & 36633 & MC10E143FN \\
\hline U1408-U1410 & 1820-7686 & 3 & IC MUXR/DATA-SEL ECL/10E 2-TO-1-LINE & 36633 & MC10E167FN \\
\hline U1501 & 1820-5390 & & IC XLTR ECL/10KH ECL-TO-TTL QUAD & 36633 & MC10H125FN \\
\hline U1502 & 1820-6781 & 1 & IC-MC10H164FN & 36633 & MC10H164FN \\
\hline U1503 & 1820-5390 & & IC XLTR ECL/10KH ECL-TO-TTL QUAD & 36633 & MC10H125FN \\
\hline U1504 & 1821-0076 & & IC RGTR ECL/10E 5-BIT & 36633 & MC10E452FN \\
\hline U1505 & 1820-6946 & & IC FF ECL/10E D-M/S POS-EDGE-TRIG COM & 36633 & MC10E131FN \\
\hline U1506 & 1826-3813 & & IC-COMP SPT9687, DUAL HIGH-SPEED & 13735 & SPT9687SIS \\
\hline U1507 & 1820-5606 & & IC GATE ECL/10KH AND QUAD 2-INP & 36633 & MC10H104FNR2 \\
\hline U1508 & 1826-1622 & & IC OP AMP LOW-BIAS-H-IMPD QUAD 14 PIN & 01698 & TL074CD \\
\hline U1601 & 1826-3258 & 4 & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 10858 & LT1112S8 \\
\hline U1602 & 1826-6553 & 2 & SPECIAL PURPOSE AMP WIDEBAND SNGL 8 PIN & 03285 & AD8037AR \\
\hline U1603-U1604 & 1826-3258 & & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 10858 & LT1112S8 \\
\hline U1605 & 1826-6553 & & SPECIAL PURPOSE AMP WIDEBAND SNGL 8 PIN & 03285 & AD8037AR \\
\hline U1701 & 1827-0356 & 1 & D/A 12-BIT 64-TQFP BIPOLAR & 11302 & MAX555CCB \\
\hline U1702 & 1826-3184 & & IC OP AMP LP 5 PIN PLSTC SOT23-5 & 03406 & LMC7101AIM5 \\
\hline U1703 & 1826-3564 & & IC RF/IF AMPL HS 8 PIN PLSTC-SOIC & 03285 & AD8009AR \\
\hline U1704 & 1826-3813 & & IC-COMP SPT9687, DUAL HIGH-SPEED & 13735 & SPT9687SIS \\
\hline U1801 & 1826-3242 & 1 & IC MULTIPLIER 4-QUAD 8 PIN PLSTC-SOIC & 03285 & AD835AR \\
\hline U1802 & 1826-3564 & 2 & IC RF/IF AMPL HS 8 PIN PLSTC-SOIC & 03285 & AD8009AR \\
\hline U1802 & 1826-3564 & & IC RF/IF AMPL HS 8 PIN PLSTC-SOIC & 03285 & AD8009AR \\
\hline U1901 & 1826-3258 & & IC OP AMP PRCN DUAL 8 PIN PLSTC-SOIC & 10858 & LT1112S8 \\
\hline U1902 & 1827-0112 & 1 & IC OP AMP HS VOLT-FDBK SGL 8-SOIC & 01698 & THS4061CDGN \\
\hline U1903 & 1826-2144 & 1 & IC OP AMP LOW-NOISE SINGLE 8 PIN & 03285 & OP-37GS \\
\hline U1904 & 1NB7-8420 & 1 & HYBRID PART & 02296 & 1NB7-8420 \\
\hline U1905-U1906 & 1826-3184 & & IC OP AMP LP 5 PIN PLSTC SOT23-5 & 03406 & LMC7101AIM5 \\
\hline U1907 & 1826-1572 & 2 & IC COMPARATOR PRCN DUAL 8 PIN PLSTC-SOIC & 02910 & LM393D \\
\hline U2001 & 1826-1862 & 1 & IC OP AMP LOW-BIAS-H-IMPD DUAL 8 PIN & 02037 & TL072CD \\
\hline U2002 & 1826-1572 & & IC COMPARATOR PRCN DUAL 8 PIN PLSTC-SOIC & 02910 & LM393D \\
\hline U2003 & 1826-3825 & 1 & I/C PWR MNGR VOLTAGE REG. SWITCHING & 03406 & LM2594M-ADJ \\
\hline U2004 - U2005 & 1826-3740 & 2 & IC PWR MGT-V-REG-SWG 1.178/1.202V 16 & 10858 & LTC1435CS \\
\hline U2006 & 1826-3826 & 1 & IC-THERMOSTAT-DUAL-LOW POWER-LM56BIM & 03406 & LM56BIM \\
\hline VR601 & 1901-1276 & 6 & DIODE, TRANSORB-ZENER & 02664 & SMBJ5.0A \\
\hline VR602 & 0960-1073 & 7 & ESD SUPPRESS OR (COL/0155633250-66511/ODIN) & 02805 & 0805ESDA \\
\hline VR603 & 1901-1276 & & DIODE, TRANSORB-ZENER & 02664 & SMBJ5.0A \\
\hline VR801 - VR802 & 0960-1073 & & ESD SUPPRESS OR (COL/01556-66501/ODIN) & 02805 & 0805ESDA \\
\hline VR803 & 1901-1346 & 4 & DIO,TVS,D0214AB,43V,1500WP,SMCJ43CA & 22280 & SMCJ43CA \\
\hline
\end{tabular}

Chapter 7 Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline VR804 & 1901-1276 & & DIODE, TRANSORB-ZENER & 02664 & SMBJ5.0A \\
\hline VR805 & 0960-1073 & & ESD SUPPRESS OR (COL/01556-66501/ODIN) & 02805 & 0805ESDA \\
\hline VR1001 & 1901-1276 & & DIODE, TRANSORB-ZENER & 02664 & SMBJ5.0A \\
\hline VR1002 & 0960-1073 & & ESD SUPPRESS OR (COL/01556-66501/ODIN) & 02805 & 0805ESDA \\
\hline VR1501 & 1901-1276 & & DIODE, TRANSORB-ZENER & 02664 & SMBJ5.0A \\
\hline VR1502 & 0960-1073 & & ESD SUPPRESS OR (COL/01556-66501/ODIN) & 02805 & 0805ESDA \\
\hline VR1503 & 1901-1346 & & DIO,TVS,D0214AB,43V,1500WP,SMCJ43CA & 22280 & SMCJ43CA \\
\hline VR1901 & 1901-1276 & & DIODE, TRANSORB-ZENER & 02664 & SMBJ5.0A \\
\hline VR1902 & 0960-1073 & & ESD SUPPRESS OR (COL/01556-66501/ODIN) & 02805 & 0805ESDA \\
\hline VR1903 & 1901-1346 & & DIO,TVS,D0214AB,43V,1500WP,SMCJ43CA & 22280 & SMCJ43CA \\
\hline VR2001 & 1901-1346 & & DIO,TVS,D0214AB,43V,1500WP,SMCJ43CA & 22280 & SMCJ43CA \\
\hline XJ1501 & 3050-1557 & & WASHER - FLAT & 05313 & 5606-4-31 \\
\hline XJ1901 & 3050-1557 & & WASHER - FLAT & 05313 & 5606-4-31 \\
\hline XJ9 & 33120-00614 & & SHIELD - RFI & 02362 & 33120-00614 \\
\hline XU105 & 1200-1592 & 1 & SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD & 01380 & 3-822275-1 \\
\hline XU207-XU210 & 1200-1593 & 4 & SOCKET-IC-PLCC 32-CONN RECT J-LEAD & 01380 & 3-822273-1 \\
\hline XU301 & 1200-1590 & 1 & SOCKET-IC-PLCC 20-CONT SQUARE J-LEAD & 01380 & 3-822269-1 \\
\hline Y101 & 0410-4009 & 1 & CERO-RES 12MHZ +1-0.8\% & 02010 & PBRC-12.00BR07 \\
\hline Y102 & 0410-2622 & 1 & CRYSTAL-QUARTZ 3.6864 MHZ & 09235 & FPX0368-20 \\
\hline
\end{tabular}

33250-66502 - Front-Panel PC Assembly (A2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designator & Agilent Part Number & Qty & Part Description & Mfr. Code & Mfr. Part Number \\
\hline C101 & 0160-7798 & 9 & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C103 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C105-C109 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C111 & 0180-4758 & 1 & CAP-FXD 47uF +-20\% 20 V TA & 12340 & T491D476M020AS \\
\hline C117-C118 & 0180-4538 & 2 & CAP-FXD 100uF +-20\% 10 V TA & 12340 & T495X107M010AS \\
\hline C221 & 0160-5967 & 2 & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline C222-C223 & 0160-7798 & & CAP 0.1UF 50V 10\% X7R 0805 & 06352 & C2012X7R1H104K \\
\hline C224 & 0160-5967 & & CF 100PF 5\% & 06352 & C2012COG1H101J \\
\hline CR100-CR107 & 1901-1227 & 8 & DIODE-SWITCHING 75V 200MA 6NS TO-236 & 02910 & BAS16 \\
\hline DS201-DS215 & 1990-2411 & 15 & GREEN LED & 12416 & CMD67-21VGC \\
\hline E100 & 9164-0173 & 1 & BEEPER, PC MOUNT & 09939 & PKM22EPP-4002 S \\
\hline J100 & 1252-8157 & 1 & CONN_FFC_VERT_FEM_40PIN_FP_SMT & 03418 & 52559-4092 \\
\hline J101 & 1253-0078 & 1 & CONN FFC VERT FEM 14PIN .5MM SMT FP SMC & 02010 & 04-6214-014-010-800 \\
\hline L101 & 9170-1739 & 1 & CORE-SHIELDING BEAD & 11702 & FBMH4532HM681 \\
\hline L102 & 9170-1663 & 1 & CORE-SHIELDING BEAD & 11702 & FBMH4532HM132 \\
\hline L201 & 9170-1584 & 1 & CORE MAGNETIC & 06352 & MMZ2012Y102B \\
\hline P102 & 1253-3587 & 1 & VERTICAL, SMT 4 POS 1.25MM PITCH & 03418 & 53398-0490 \\
\hline Q100 & 1854-1037 & 1 & TRANSISTOR NPN SI TO-236AA PD=350MW & 00746 & SST3904T116 \\
\hline R105-R109 & 0699-3051 & 10 & RESISTOR 10K +-1\% .1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R120-R121 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R123-R124 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline R200-R214 & 0699-3059 & 15 & RESISTOR \(162+-1 \%\).1W TKF TC=0+-100 & 05524 & CRCW08051620F \\
\hline R216 & 0699-3051 & & RESISTOR 10K +-1\%.1W TKF TC=0+-100 & 00746 & MCR10-F-1002 \\
\hline S203 & 0960-0892 & 1 & ROTARY ENCODER & 11318 & EC16B2410402A \\
\hline U201- U202 & 1821-0299 & 2 & IC FF BICMOS/ABT D-TYPE POS-EDGE-TRIG & 01698 & 74ABT273DW \\
\hline U204 & 1826-2264 & 1 & IC 34064 & 36633 & MC34064D-5R2 \\
\hline
\end{tabular}

33250A Chassis Assembly
\begin{tabular}{|l|c|c|l|l|l|}
\hline \begin{tabular}{c} 
Reference \\
Designator
\end{tabular} & \begin{tabular}{c} 
Agilent Part \\
Number
\end{tabular} & Qty & \multicolumn{1}{|c|}{ Part Description } & \begin{tabular}{l} 
Mfr. \\
Code
\end{tabular} & Mfr. Part Number \\
\hline CBL1 & \(33250-61612\) & 1 & CABLE, RS-232 & 02364 & \(33250-61612\) \\
CLP1 & \(1400-1780\) & 1 & CLIP-CABLE HOLDER & 39442 & DCS-150-CZC \\
FAN1 & \(33250-68501\) & 1 & FAN ASSEMBLY & 02634 & \(33250-68501\) \\
FLT1 & \(33250-67601\) & 1 & LINE FILTER ASSEMBLY & 02634 & \(33250-67601\) \\
FRM1 & \(33250-00611\) & 1 & POWER SUPPLY FRAME & 02364 & \(33250-00611\) \\
INS1 & \(33250-44105\) & 1 & INSULATOR, POWER SUPPLY & 02634 & \(33250-44105\) \\
MP2 & \(33250-80111\) & 1 & CHASSIS & 02634 & \(33250-80111\) \\
MP5 & \(33250-84111\) & 1 & COVER & 02364 & \(33250-84111\) \\
MP6 & \(34401-45011\) & 1 & HANDLE & 02364 & \(33250-45011\) \\
MP7 & \(34401-86010\) & 1 & KIT-BUMPERS/COVER & 02364 & \(34401-86010\) \\
MP9 & \(34401-88304\) & 1 & REAR BEZEL & 02364 & \(34401-88304\) \\
NUT1 - NUT2 & \(2940-0256\) & 2 & NUT-HEX-DBL-CHAM 1/2-28-THD .095-IN-THK & 01380 & \(1-329631-2\) \\
NUT3 & \(0535-0154\) & 1 & CABLE 3COPPER 600V 12 AWG .635IN OD & 19400 & \(8121-1070\) \\
PLT1 & \(5065-6621\) & 1 & HEX STANDOFF-MALE & 02364 & \(5065-6621\) \\
PWR1 & \(33250-87910\) & 1 & POWER SUPPLY ASSEMBLY & 02634 & \(33250-87910\) \\
RVT1 - RVT4 & \(0361-1840\) & 4 & RIVET-FAN SNAP & 11855 & FSP-2 \\
SCR1 - SCR9 & \(0515-0433\) & 9 & SCREW M4x0.7x8MM & 05610 & \(0515-0433\) \\
SHD1 & \(33250-40603\) & 1 & SAFETY SHIELD, POWER SUPPLY & 02634 & \(33250-40603\) \\
STD1 - STD2 & \(0380-1858\) & 2 & STANDOFF-HEX .312-IN-LG 4-40-THD & 02121 & ST9532-36 \\
SW1 & \(33250-13603\) & 1 & INTUILINK ARB SOFTWARE & 02634 & \(33250-13603\) \\
WSH1- WSH2 & \(2190-0699\) & 2 & WASHER-LK INTL T 1/2 IN .5-IN-ID & 01380 & \(1-329632-2\) \\
\hline
\end{tabular}

Chapter 7 Replaceable Parts

\section*{33250A Front-Panel Assembly}
\begin{tabular}{|l|c|c|l|l|l|}
\hline \begin{tabular}{c} 
Reference \\
Designator
\end{tabular} & \begin{tabular}{c} 
Agilent Part \\
Number
\end{tabular} & Qty & \multicolumn{1}{|c|}{ Part Description } & \begin{tabular}{c} 
Mfr. \\
Code
\end{tabular} & \multicolumn{1}{c|}{ Mfr. Part Number } \\
\hline ASY1 & \(33250-60201\) & 1 & \begin{tabular}{l} 
FRONT-PANEL ASSEMBLY \\
(includes 33250-40201 and 33250-40202)
\end{tabular} & 02634 & \(33250-60201\) \\
CBL2-CBL3 & \(33250-61606\) & 2 & CABLE, 50 OHM, BNC - SMB & 02634 & \(33250-61606\) \\
CBL4 & \(33250-61611\) & 1 & CABLE, 14 CONDUCTOR RIBBON & 02364 & \(33250-61611\) \\
CBL5 & \(33250-61613\) & 1 & CABLE, 40 CONDUCTOR RIBBON & 02634 & \(33250-61613\) \\
KNB1 & \(33250-87401\) & 1 & KNOB & 02634 & \(33250-87401\) \\
MP1 & \(33250-40201\) & 1 & BEZEL, FRONT & 02634 & \(33250-40201\) \\
MP2 & \(33250-40202\) & 1 & WINDOW FRAME & 02634 & \(33250-40202\) \\
NUT3 & \(0535-0154\) & 1 & NUT-HEX SGL-CHAM M9.0 X 0.75 2MM-THK & 11239 & \(3-9-03\) \\
PAD1 & \(33250-88001\) & 1 & KEYPAD & 02634 & \(33250-88001\) \\
PLT2 & \(33250-04102\) & 1 & PLATE, PLASTIC BACKER PLATE & 02634 & \(33250-04102\) \\
PLT3 & \(33250-44104\) & 1 & SUPPORT PLATE, FRONT PANEL & 02634 & \(33250-44104\) \\
SHD2 & \(33250-00604\) & 1 & SHIELD- EMC & 02634 & \(33250-00604\) \\
WIN1 & \(33250-49301\) & 1 & WINDOW, FRONT & 02634 & \(33250-49301\) \\
WSH3 & \(2190-0016\) & 1 & WASHER-LK INTL T 3/8 IN .377-IN-ID & 02440 & \(2190-0016\) \\
\hline
\end{tabular}

\section*{Manufacturer's List}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mfr Code & Manufacturer's Name & \multicolumn{3}{|l|}{Manufacturer's Address} & Zip Code \\
\hline 00467 & OMRON ELECTRONICS INC & SCHAUMBURG & IL & US & 60173 \\
\hline 00746 & ROHM CO LTD & KYOTO & & JP & 00746 \\
\hline 01172 & RCD COMPONENTS INC & MANCHESTER & NH & US & 03101 \\
\hline 01380 & AMP INC & HARRISBURG & PA & US & 17101 \\
\hline 01698 & TEXAS INSTRUMENTS INC & DALLAS & TX & US & 75201 \\
\hline 01886 & COILCRAFT INC & CARY & IL & US & 60013 \\
\hline 01850 & AROMAT CORP & NEW PROVIDENCE & NJ & US & 07974 \\
\hline 02010 & AVX CORP & MYRTLE BEACH & SC & US & 29572 \\
\hline 02037 & MOTOROLA INC & SCHAUMBURG & IL & US & 60159 \\
\hline 02121 & LYN-TRON INC & SPOKANE & WA & US & 99201 \\
\hline 02213 & HUGHES,R S COMPANY INC & SUNNYVALE & CA & US & 94086 \\
\hline 02237 & FAIRCHILD SEMICONDUCTOR CORP FSC & SOUTH PORTLAND & ME & US & 04106 \\
\hline 02364 & AGILENT TECHNOLOGIES, INC. & PALO ALTO & CA & US & 94303 \\
\hline 02440 & THOMPSON BREMER DIV VARE & CHICAGO & IL & US & 60601 \\
\hline 02499 & INTERNATIONAL RESISTIVE CO & BOONE & NC & US & 28607 \\
\hline 02664 & SEMTECH CORPORATION & NEWBURY PARK & CA & US & 91319 \\
\hline 02805 & COOPER INDUSTRIES INC & HOUSTON & TX & US & 77044 \\
\hline 02865 & SKYWORKS SOLUTIONS INC & WOBURN & MA & US & 01801 \\
\hline 02883 & VISHAY/SILICONIX INC & SANTA CLARA & CA & US & 53201 \\
\hline 02910 & PHILIPS SEMICONDUCTORS BV & EINDHOVEN & & NL & \\
\hline 03038 & AMPHENOL CORP & WALLINGFORD & CT & US & 06492 \\
\hline 03118 & ILLINOIS TOOL WORKS INC & MILWAUKEE & WI & US & 53201 \\
\hline 03285 & ANALOG DEVICES INC & NORWOOD & MA & US & 02062 \\
\hline 03406 & NATIONAL SEMICONDUCTOR CORP & SANTA CLARA & CA & US & 95050 \\
\hline 03418 & MOLEX INC & LISLE & IL & US & 60532 \\
\hline 04726 & 3M/MINNESOTA MINING \& MANUFACTURING & SAINT PAUL & MN & US & 55101 \\
\hline 05232 & BRADY W H CO & MILWAUKEE & WI & US & 53201 \\
\hline 05313 & SEASTROM MFG CO INC & TWIN FALLS & ID & US & 83301 \\
\hline 05524 & VISHAY INTERTECHNOLOGY INC & MALVERN & PA & US & 19355 \\
\hline 05610 & TEXTRON INC & PROVIDENCE & RI & US & 02901 \\
\hline 06337 & KONINKLIJKE PHILIPS ELECTRONICS NV & AMSTERDAM & & NL & \\
\hline 06352 & TDK CORPORATION OF AMERICA & MOUNT PROSPECT & IL & US & 60056 \\
\hline 07606 & ITW / MEDALIST & GLENVIEW & IL & US & 60025 \\
\hline 09141 & ALPS ELECTRIC CO LTD & OTA-KU & & JP & \\
\hline 09891 & KOA CORPORATION & INA & & JP & \\
\hline 09235 & FOX ELECTRONICS & FORT MYERS & FL & US & 33901 \\
\hline 09939 & MURATA ELECTRONICS NORTH AMERICA & SMYRNA & GA & US & 30080 \\
\hline 10800 & OPTREX CORP & BUNKYO-KU & 13 & JP & \\
\hline 10858 & LINEAR TECHNOLOGY CORPORATION & MILPITAS & CA & US & 95035 \\
\hline 11116 & SPECIALTY ENTERPRISES INC & MONTEBELLO & CA & US & 90640 \\
\hline 11239 & NOBEL MERCANTILE CO & ALBUQUERQUE & NM & US & 87101 \\
\hline 11302 & MAXIM INTEGRATED PRODUCTS INC & SUNNYVALE & CA & US & 94085 \\
\hline 11702 & TAIYO YUDEN CO LTD & TOKYO & & JP & \\
\hline 11855 & DELTA ELECTRONIC INDUSTRIES CO & TAIPEI & & TW & \\
\hline
\end{tabular}

Chapter 7 Replaceable Parts
Manufacturer's List
\begin{tabular}{|c|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Mfr \\
Code
\end{tabular} & \multicolumn{1}{|c|}{ Manufacturer's Name } & \multicolumn{2}{|c|}{ Manufacturer's Address } & Zip Code \\
\hline 12125 & SAMSUNG SEMICONDUCTOR INC & CA & US & 95101 \\
12322 & MAINE POLY INC & SAN JOSE & ME & US & 04236 \\
12340 & KEMET ELECTRONICS CORP & GREENE & SC & US & 29680 \\
12416 & SLI INC/ CHICAGO MINIATURE LAMP INC & SIMPSONVILLE & CANTON & MA & US \\
12880 & ALTERA CORP & SAN JOSE & 02021 \\
14543 & RAMTRON & COLORADO SPRINGS & CO & US & 95101 \\
19400 & COLOTEX ELECTRIC SUPPLY & LOVELAND & 80901 \\
22280 & GENERAL SEMICONDUCTOR INC & MELVILLE & NY & US & 80537 \\
25936 & TAI-TECH ADVANCED & SINGAPORE & 11747 \\
36633 & ON SEMICONDUCTOR & PHOENIX & SG & US & 85001 \\
39442 & DIE CO INC & WILLOUGHBY & OH & US & 44094 \\
\hline
\end{tabular}

\section*{Backdating}

\section*{Backdating}

This chapter normally contains information necessary to adapt this manual to instruments not directly covered by the current content.

At this printing, the manual applies to all instruments.

\section*{Schematics}

\section*{Schematics}
- A1 Earth Referenced Communications Schematic, on page 185
- A1 Main Processor Schematic, on page 186
- A1 Main Gate Array Schematic, on page 187
- A1 Display Controller Schematic, on page 188
- A1 DSP Schematic, on page 189
- A1 Modulation Schematic, on page 190
- A1 System DAC Schematic, on page 191
- A1 Timebase Schematic, on page 192
- A1 Phase-Locked Loops Schematic, on page 193
- A1 Trigger Schematic, on page 194
- A1 Clock Divider and Control Schematic, on page 195
- A1 Synthesis IC Schematic, on page 196
- A1 Waveform Memory Schematic, on page 197
- A1 Synchronous Multiplexer Schematic, on page 198
- A1 Digital Waveform and Sync Schematic, on page 199
- A1 Variable-Edge Level Translation Schematic, on page 200
- A1 Waveform DAC, Filters, and Comparator Schematic, on page 201
- A1 Multiplier Schematic, on page 202
- A1 Main Output Circuitry Schematic, on page 203
- A1 Power Supply Schematic, on page 204
- A2 Keyboard Schematic, on page 205
- A2 Display Schematic, on page 206
- A1 Component Locator (top), on page 207
- A1 Component Locator (bottom), on page 208
- A2 Component Locator (top), on page 209
- A2 Component Locator (bottom), on page 210

You may notice parts labeled as "No Load" on several of the schematics.
These are parts that were included for design and development but were later removed to enhance performance or reduce cost.


















33250-66511 (sheet 16 of 20 )



33250-66511 (sheet 18 of 20)






33250-66511 (sheet 1 of 2)



33250-66502 (sheet 1 of 2)
A2 Component Locator (top)


33250-66502 (sheet 2 of 2)
A2 Component Locator (bottom)
© Copyright Agilent Technologies, Inc. 2000, 2003

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies as governed by the United States and international copyright laws.

\section*{Manual Part Number}

33250-90011, March 2003
(order as 33250-90100 manual set)

\section*{Edition}

Edition 2, March 2003
Edition 1, April 2000
Printed in Malaysia
Agilent Technologies, Inc.
815 14th Street S.W.
Loveland, Colorado 80537 U.S.A.

\section*{Assistance}

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products. For assistance, contact your nearest Agilent Technologies Sales and Service Office. Further information is available on the Agilent web site at www.agilent.com /find/assist.

\section*{Trademark Information}

Microsoft \({ }^{\circledR}\) and Windows \({ }^{\circledR}\) are U.S. registered trademarks of Microsoft Corporation. All other brand and product names are trademarks or registered trademarks of their respective companies.

\section*{Certification}

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

\section*{Warranty}

\section*{The material contained in this} document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement will control.

\section*{Technologies Licenses}

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

\section*{Restricted Rights Legend}

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

\section*{Safety Notices}

Do not defeat power cord safety ground feature. Plug in to a grounded outlet.

Do not use product in any manner not specified by the manufacturer.

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

\section*{WARNING}

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

\section*{CAUTION}

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

\section*{Symbols}


Earth ground


Chassis ground


Risk of electric shock

\section*{WARNING}

Main power disconnect: Unplug product from wall outlet and remove power cord before servicing. Only qualified, service-trained personnel should remove the cover from the instrument.

For continued protection against fire, replace the line fuse only with a fuse of the specified type and rating.```


[^0]:    ${ }^{1}$ A total of four waveforms can be stored.
    ${ }^{2}$ Harmonic distortion at low amplitudes is limited by a -70 dBm floor.
    ${ }^{3}$ Spurious noise at low amplitudes is limited by a -75 dBm floor.
    ${ }^{4}$ Edge time decreased at higher frequency.

[^1]:    1 Add 1/10th of output amplitude and offset specification per ${ }^{\circ} \mathrm{C}$ for operation outside of $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ range (1-year specification).

    220 mVpp to 20 Vpp into open-circuit load.
    3 dB rounded to 1 digit. Instrument adheres to "\%" specification.

    4 Short-circuit protected to ground at all times.
    5 Sine and square waveforms above 25 MHz are allowed only with an "Infinite" burst count.

[^2]:    ${ }^{1}$ Time to change parameter and output new signal.
    2 Modulation or sweep off.
    ${ }^{3}$ Times for 5-digit integer and 12-digit real numbers.

