

Softwarebeschreibung

TD-SCDMA Basisstationstest

Applikations-Firmware R&S FS-K76

1300.7291.02

ENGLISH MANUAL FOLLOWS FIRST COLORED DIVIDER

Printed in the Federal Republic of Germany

Inhaltsverzeichnis

Sicherheitshinweise Qualitätszertifikat Support-Center-Adresse Liste der R&S-Niederlassungen

Inhalt des Handbuchs zur Applikations-Firmware R&S FS-K76

TD-SO	CDMA Basisstationstest Applikations-Firmware R&S FS-K76	7
1	Installieren und Freischalten der Applikations-Firmware	8
	Installation	8
	Freischaltung	8
2	Getting Started	9
	Erstellen eines TD-SCDMA-Signals mit WinIQSIM	
	Grundeinstellungen in der Betriebsart TD-SCDMA BTS	
	Messung 1: Messung der Leistung des Signals	
	Messung 2: Messung der Spektrum-Emission-Mask	15
	Messung 3: Messung der relativen Code-Domain-Power und des Frequenzfehlers	
	Einstellung: Synchronisation der Referenzfrequenzen	
	Einstellung: Verhalten bei einer abweichenden Mittenfrequenzeinstellung.	
	Einstellung: Verhalten bei falschem Scrambling-Code	
	Messung 4: Messung des Composite EVM	19
	Messung 5: Messung des Peak-Code-Domain-Errors	
	Messung 6: Messung des RHO-Faktors	
2	Moosaufhau für Basisstationatasta	 າງ
3	Standard Massaufbau	22
	Standard-Messaulbau	22 22
		23
4	Menu-Ubersicht	24
5	Konfiguration der TD-SCDMA-Messungen	26
	Messung der Kanalleistung	27
	Messung der Nachbarkanalleistung - ACLR	29
	Überprüfung der Signalleistung – SPECTRUM EM MASK	35
	3GPP Norm: Spectrum Emission Mask	
	I SM NORM: Spectrum Emission Mask	
	Signallaisturg über der Zeit – DOWED VO TIME	
	Signalieistung über der Zeit – POWER VS TIME	
	Signaistatistik	45
	Darstellung der Auswertungen - RESUITS	49 51
	Konfiguration der Messungen	65
	Konfiguration der Firmware Applikation –SETTINGS	71
	Frequenz-Einstellung – Taste FREQ	73
	Span-Einstellungen – Taste SPAN Pegel-Finstellung – Taste AMPT	
	Marker-Einstellungen – Taste <i>MKR</i>	
	Marker-Einstellungen – Taste <i>MKR →</i>	76
	Marker-Funktionen – Taste MKR FCTN	77

6	Bandbreiten-Einstellung – Taste <i>BW</i> Steuerung des Messablaufs – Taste <i>SWEEP</i> Auswahl der Messung – Taste <i>MEAS</i> Trigger-Einstellungen – Taste <i>TRIG</i> Trace-Einstellungen – Taste <i>TRACE</i> Display-Lines – Taste <i>LINES</i> Einstellungen des Messbildschirms – Taste <i>DISP</i> Speichern und Laden von Gerätedaten – Taste <i>FILE</i> Fernbedienbefehle	77 77 78 78 79 79 79 79
•	CALCulate:FEED – Subsystem	80
	CALCulate:LIMit:ESPectrum Subsystem	82
	CALCulate:MARKer – Subsystem	84
	CONFigure:CDPower Subsystem	85
	INSTrument Subsystem	90
	SENSe:Power Subsystem	91
	SENSe:CDPower Subsystem	93
	TRACe Subsystem	96
	STATus-QUEStionable:SYNC-Register	.101
	Tabelle der Softkeys mit Zuordnung der IEC-Bus-Befehle	.102
	Taste MEAS bzw. Hotkey MEAS	.102
	Holkey RESULTS 52W. Solikey CODE DOW ANALYZER	100
	Hotkey SETTINGS	.108
7	Prüfen der Solleigenschaften	.109
	Messgeräte und Hilfsmittel	.109
	Prüfablauf	.110
8	Glossar	.112
9	Index	.113

Bilder

Bild 2-1	WinIQSIM – TD-SCDMA Configuration	10
Bild 2-2	WinIQSIM – Sendefiltereinstellungen	10
Bild 2-3	WinIQSIM – Konfiguration eines Subframes	11
Bild 2-4	WinIQSIM – Kanaleinstellungen in Slot 0	11
Bild 2-5	WinIQSIM – Kanaleinstellungen in den Slots 4-6	12
Bild 2-6	WinIQSIM – Trigger-Einstellungen	12
Bild 3-1	BTS Messaufbau	22
Bild 4-1	Hotkeyleiste mit freigeschalteter Applikations-Firmware R&S FS-K76	24
Bild 4-2	Übersicht der Menüs in der Applikations-Firmware R&S FS-K76	24
Bild 4-3	Übersicht der Menüs	25
Bild 5-1	Messung der Leistung über 1.6 MHz Bandbreite	27
Bild 5-2	Messung der Nachbarkanalleistung	29
Bild 5-3	Messung der Spectrum Emission Mask (3GPP)	35
Bild 5-4	Messung der belegten Bandbreite	41
Bild 5-5	Messung der Signalleistung über der Zeit	43
Bild 5-6	CCDF des TD-SCDMA-Signals	45
Bild 5-7	Funktionsfelder der Diagramme	52
Bild 5-8	CDP-Diagramm	53
Bild 5-9	CDEP-Diagramm	54
Bild 5-10	Composite-EVM-Diagramm	55
Bild 5-11	Composite-EVM-Diagramm bei nicht erkannten Kanälen	55
Bild 5-12	Peak-Code-Domain-Error-Diagramm	56
Bild 5-13	Peak-Code-Domain-Error-Diagramm bei nicht erkannten Kanälen	56
Bild 5-14	Power-versus-Slotdiagramm mit absoluter Leistungsangabe	57
Bild 5-15	Result Summary	57
Bild 5-16	Kanaltabelle in Code Order	59
Bild 5-17	Kanaltabelle in Midamble Order	60
Bild 5-18	Symbol Constellation Diagram bei 8PSK-Modulation	61
Bild 5-19	Error Vector Magnitude für einen Kanal eines Slots	61
Bild 5-20	Zustandsdiagramm für QPSK und 8PSK inkl. Bitwerten	62
Bild 5-21	Demodulierte Bits für einen Kanal mit 8PSK-Modulation	62
Bild 5-22	Composite Constellation Diagram	63
Bild 5-23	Power-versus-Symbol für einen Kanal eines Slots	63
Bild 5-24	Tabelle zum Editieren einer Kanalkonfiguration	66
Bild 5-25	Tabelle der Sonderkanäle	68
Bild 5-26	Neuanlegen einer Kanalkonfiguration	70
Bild 5-27	Marker-Feld der CDP-Messung	

5

Tabellen

Tabelle 2-1	Grundeinstellung der Code-Domain-Messung nach Preset	13
Tabelle 5-1	Default ACLR Einstellungen	30
Tabelle 5-2	Maximale Ausgangsleistung P < 26 dBm	37
Tabelle 5-3	Maximale Ausgangsleistung 26 dBm <= P < 34 dBm	37
Tabelle 5-4	Ausgangsleistung P >= 34 dBm	37
Tabelle 5-5	Maximale Ausgangsleistung P < 31 dBm	38
Tabelle 5-6	Maximale Ausgangsleistung 31 dBm <= P < 39 dBm	38
Tabelle 5-7	Maximale Ausgangsleistung 39 dBm <= P < 43 dBm	38
Tabelle 5-8	Maximale Ausgangsleistung P >= 43 dBm	38
Tabelle 5-9	Auswertungen im Screen A	49
Tabelle 5-10	Auswertungen im Screen B	49
Tabelle 5-11	Zusammenhang zwischen Spreading-Faktor und Symbolanzahl sowie der Datenrate	: 50
Tabelle 6-1	Bedeutung der Bits im STATus:QUEstionable:SYNC-Register	. 101

Inhalt der Softwarebeschreibung der Applikations-Firmware R&S FS-K76

Die vorliegende Softwarebeschreibung informiert über die Bedienung der Spektrumanalysatoren R&S FSU, R&S FSP bzw. des Signalanalysators R&S FSQ bei einer Ausstattung mit der Applikations-Firmware R&S FS-K76. Sie enthält die Beschreibung der Menüs und der Fernbedienungsbefehle für die TD-SCDMA-Basisstationstests-Applikations-Firmware.

Die übrige Bedienung des Analysators kann dessen Bedienhandbuch entnommen werden.

Die Softwarebeschreibung der Applikations-Firmware gliedert sich in das Datenblatt und 9 Kapitel:

- Datenblattinformiert über die garantierten und typischen technischen Daten und die
Eigenschaften der Firmware.
- Kapitel 1 beschreibt die Freischaltung der Applikations-Firmware.
- Kapitel 2 beschreibt typische Messbeispiele anhand von Testmessungen.
- Kapitel 3 beschreibt den Messaufbau für Basisstationstests.
- Kapitel 4 gibt einen schematischen Überblick über die Bedienmenüs.
- Kapitel 5bietet als Referenzteil für die manuelle Bedienung eine detaillierte Beschreibung
aller Funktionen für Basisstationstests. Das Kapitel listet außerdem zu jeder
Funktion den entsprechenden Fernsteuerbefehl auf.
- Kapitel 6 beschreibt alle IEC-Bus-Befehle, die für die Applikations-Firmware definiert sind. Das Kapitel enthält am Schluss eine alphabetische Liste aller Fernbedienungsbefehle sowie eine Tabelle mit der Zuordnung Fernsteuerbefehl zu Softkey.
- Kapitel 7 beschreibt das Prüfen der Solleigenschaften.
- Kapitel 8 gibt Begriffserklärungen zu Messgrößen der Code-Domain-Messung.
- Kapitel 9 enthält das Stichwortverzeichnis zur vorliegenden Softwarebeschreibung.

TD-SCDMA Basisstationstest Applikations-Firmware R&S FS-K76

Der Analysator führt bei einer Ausstattung mit der Applikations-Firmware R&S FS-K76 Code-Domain-Power-Messungen an Forward-Link-Signalen (Basisstation) durch. Die Messungen basieren wahlweise auf dem 3GPP-Standard (Third Generation Partnership Project) oder dem CWTS-TSM-Standard (China Wireless Telecommunication Standard).

Es liegen die Standards 3GPP TS 25.142 "Base station conformance testing (TDD)" in der Version V5.5.0, 3GPP TS 25.221 "Physical channels and mapping of transport channels onto physical channels (TDD)" in der Version V5.5.0 und CWTS TSM 11.21 "Base Station System (BSS) equipment specification" in der Version V3.1.0 zu Grunde. Wenn im weiteren Text von der TD-SCDMA-Spezifikation gesprochen wird, sind diese Normen gemeint.

Zusätzlich zu den im TD-SCDMA-Standard vorgeschriebenen Messungen in der Code-Domain bietet die Applikation Messungen im Spektralbereich wie Kanalleistung, Nachbarkanalleistung, belegte Bandbreite und Spectrum-Emission-Mask mit vordefinierten Einstellungen an.

1 Installieren und Freischalten der Applikations-Firmware

Installation

Ist die Applikations-Firmware R&S FS-K76 noch nicht auf dem Gerät installiert, so muss ein Firmware-Update erfolgen. Bei Einbau ab Werk ist dieser schon erfolgt.

Damit die Applikations-Firmware installiert werden kann, muss eine entsprechende Basis-Firmware des Grundgerätes auf dem Analysator installiert sein. Die kompatiblen Versionen sind den Release-Notes der aktuellen Applikations-Firmware R&S FS-K76 zu entnehmen.

Muss die Basis-Firmware auf einen neuen Stand gebracht werden, so ist der Firmware-Update mit den aktuellen Disketten der Basis-Firmware über die Tastenfolge $SETUP \rightarrow NEXT \rightarrow FIRMWARE$ UPDATE zu starten.

Ist die korrekte Basis-Firmware installiert, wird mit den Disketten der Applikations-Firmware R&S FS-K76 über dieselbe Tastenfolge SETUP \rightarrow NEXT \rightarrow FIRMWARE UPDATE der Firmware-Update für die Applikations-Firmware gestartet.

Nach der Installation muss noch die Freischaltung der Applikations-Firmware, wie folgt beschrieben, erfolgen.

Freischaltung

Die Applikations-Firmware R&S FS-K76 wird im Menü *SETUP* → *GENERAL SETUP* durch die Eingabe eines Schlüsselwortes freigeschaltet. Das Schlüsselwort wird mit der Applikations-Firmware mitgeliefert. Bei einem Einbau ab Werk ist die Freischaltung der Applikations-Firmware schon erfolgt.

GENERAL SETUP Menü:

Der Softkey OPTIONS öffnet ein Untermenü, in dem die Schlüsselwörter für die Applikations-Firmware eingegeben werden können. Die bereits vorhanden Applikationen werden in einer Tabelle angezeigt, die beim Eintritt in das Untermenü geöffnet wird.

Der Softkey *INSTALL OPTION* aktiviert die Eingabe des Schlüsselworts für eine Applikations-Firmware.

Im Eingabefeld kann ein Schlüsselwort eingeben werden. Ist das Schlüsselwort gültig, wird die Meldung *OPTION KEY OK* angezeigt und die Applikations-Firmware wird in die Tabelle *FIRMWARE OPTIONS* eingetragen.

Ist ein Schlüsselwort ungültig, wird die Meldung OPTION KEY INVALID angezeigt.

Ist die Version der Applikations-Firmware und die Version der Basis-Firmware nicht kompatibel wird eine entsprechende Meldung ausgegeben. Bitte befolgen Sie in diesem Fall die Anleitung im obigen Kapitel Installation.

FS-K76

2 Getting Started

Das folgende Kapitel erklärt grundlegende TD-SCDMA Basisstationstests anhand eines Messaufbaus mit dem Signalgenerator R&S SMIQ als Messobjekt. Es beschreibt, wie Bedien- und Messfehler durch korrekte Voreinstellungen vermieden werden.

Der Messbildschirm ist in Kapitel 5 bei den jeweiligen Messungen dargestellt.

Bei den Messungen sind exemplarisch wichtige Einstellungen zur Vermeidung von Messfehlern hervorgehoben. Anschließend an die korrekte Einstellung wird jeweils die Auswirkung einer nicht korrekten Einstellung demonstriert. Folgende Messungen werden durchgeführt:

- Messung 1: Messung des Spektrums des Signals
- Messung 2: Messung der Spektrum-Emission-Mask
- Messung 3: Messung der relativen Code-Domain-Power und des Frequenzfehlers
 Einstellung: Mittenfrequenz
 - Einstellung: Scrambling-Code
- Messung 4: Messung des Composite-EVM
- Messung 5: Messung des Peak-Code-Domain-Error
- Messung 6: Messung des RHO-Faktors

Die TD-SCDMA-Rohdaten werden mit der WinIQSIM-Software erstellt und in den Arbitrary Waveform-Generator des R&S SMIQ geladen.

Die Messungen werden mit folgenden Geräten / Hilfsmitteln durchgeführt:

- Spektrumanalysator R&S FSU, R&S FSP oder Signalanalysator R&S FSQ mit Applikations-Firmware R&S FS-K76 Basisstationstest f
 ür TD-SCDMA.
- Vektor-Signalgenerator R&S SMIQ mit Hardwareoptionen B11 Datengenerator / B20 Modulationscoder und B60 Arbitrary Waveform Generator sowie Firmware Version 5.70 oder höher mit Freigeschalteter Option K14 TD-SCDMA und R&S SMIQ-Z5 PARDATA BNC ADAPTER für externes Triggersignal.
- PC der entweder über ein serielles Kabel mit dem R&S SMIQ verbunden ist, oder über eine IEC-BUS-Karte verfügt und mittels IEC-Bus-Kabel mit dem R&S SMIQ verbunden ist. Auf diesem PC ist die R&S WinIQSIM Software 4.00 oder höher installiert. Diese Software steht auf der Rohde & Schwarz Internet Seite <u>http://www.rohde-schwarz.com</u> zum Download zur Verfügung.
- 1 Koaxialkabel, 50 Ω, Länge ca. 1m, N-Verbindung
- 2 Koaxialkabel, 50 Ω, Länge ca. 1m, BNC-Verbindung

Erstellen eines TD-SCDMA-Signals mit WinIQSIM

Die Software WinIQSIM steht unter <u>http://www.rohde-schwarz.com</u> zum Herunterladen zur Verfügung und wird auf einem PC installiert. Mit Hilfe der WinIQSIM-Software können TD-SCDMA-Signale generiert werden, um anschließend auf einem R&S SMIQ oder R&S AMIQ transferiert zu werden. Im folgenden wird erklärt, wie ein Testsignal generiert wird, welches der TD-SCDMA-Spezifikation genügt. Es wird die WinIQSIM Version 4.00 oder höher vorausgesetzt.

Start und Standard auswählen:

Starten der WinIQSIM.exe.

Im Menü File den Menüpunkt New auswählen und in der nachfolgenden Liste TD-SCDMA selektieren. Es erscheint der Dialog Block Diagram - TD-SCDMA.

Dort **TD-SCDMA Configuration** auswählen, um das TD-SCDMA-Signal zu konfigurieren. Der folgende Dialog wird geöffnet:

	TD-SCDMA Configuration				
-General Settings-					
Mode	C Downlink only C Uplink only C Downlink and Uplink				
Chip Rate Variation	€1.2800 Mcps Set to standard				
Sequence Length	1 5 ms frames PRBS Init different start values				
Clipping Level	🕽 100 % 🔿 vector: i+jq] @ scalar: i . q				
	Filtering				
Cell Configuration	Predefined Settings Reset All Cells				
Cell 1 Cell 2 Cell 3 Cell 4 Off Off On Off On Off On					
Copy Cell Source Cell 1 Destination Cell 2 Copy					
	CCDF-Iest Glose				

Bild 2-1 WinIQSIM – TD-SCDMA Configuration

Sendefilter einstellen:

Filtering auswählen, um das TD-SCDMA-Sendefilter zu konfigurieren. Die **Impulse Length** ist auf 120 zu erhöhen.

TD-SCDM	IA Filtering
Filter / Window	
Filter Functio	n Root Cosine 💌
File	
Roll C	iff 🕄 0.22
Window Function	n Rect 💌
Chabyshav Ripple /d	B 🗘 0 👀
Impulse Leng	th 륒 120
Oversampling 🗖 Auto	€10
Baseband Impul	se Dirac 💌
QK	Çancel

Bild 2-2 WinIQSIM – Sendefiltereinstellungen

Subframe konfigurieren: In der **TD-SCDMA Configuration** werden nachfolgende Einstellungen vorgenommen, damit ein Signal mit je 8 Kanälen gleicher Leistung in den Slots 4, 5, und 6 entsteht. Dieses Modell ist bei einigen Tests im TD-SCDMA-Standard zum Testen vorgeschrieben. Zusätzlich muss zur Synchronisation der Kanal 1.16 in Slot 0 eingeschaltet sein. Dies ist in der Regel der P-CCPCH. Als **Scrambling Code** wird 0 beibehalten. **Mode** auf **Downlink only** stellen und **Cell 1** zum editieren auswählen.

Die Slots 0, 4, 5 und 6 sind auf ON zu stellen:

		TD	-SCDMA Cell Cor	nfiguration			
General Settings Cell 1 State Off On	Scrambling Code Switching Point	\$0 ⊏ si \$ 3 ⊏ u	S DPCH Dwl	SYNC Code 0 DwPTS Power \$0.00			
Cell Configuration	it						
Slot 0 Off I On	Dw PTS GP	Jp TS Of Dr	Stot 2 Of Cr	Slot 3 Of Cr	Slot 4 Off III On	Slot 5 Off on	Slot 6 Off On
active slot inactive slot uplink							

Kanäle einstellen: Zur Synchronisation der Applikations-Firmware R&S FS-K76 muss der Kanal 1.16 in Slot 0 aktiv sein. Dies entspricht den WinIQSIM-Einstellungen Gross Data Rate: 17.6 kbps (SF 16) und Spr. Code 0. Der MA-Shift soll auf 120 gestellt werden, damit sich eine gültige Code-Midamble-Zuordnung ergibt. (Eine falsche Midamble beeinflusst nur die Kanaltabelle, hat jedoch auf die anderen Messungen oder die Synchronisation keine Auswirkung). Weitere Kanäle in Slot 0 werden nicht eingeschaltet. Die Leistung der Kanäle muss nach Beenden der Einstellung durch Betätigung von **Adjust Total Power to 0 dB** normiert werden.

	On Syra	a Shih Repetition M	\$1	S*64	ing Flag 🗐 🗍	_				
unst Typ	xe 2 (L1 field:	not used)	data 352		midembia 144		data 352		GP 16	field le in d
R	leset Slot	Adjust Total Po	www.to0.dB		Charr	vel Graph	Code D	lomain		Pa
CH NO	Туре	Gross Data Rate	Spr. Code	e MA Shift	Power/dB	Data	Sync Shift	TPC	State	n *°
0	P-CCPCH	17.6 kbps (SF 16)	- :0	120 📼	0.00	PR8S 💌	0	0	ON	1
1	P-CCPCH	17.6 kbps (SF 16)	I 1 0	0 🗉	0.00	PR85 💌	0	0	OFF	1
2	S-CCPCH	17.6 kbps (SF 16)	I 1 0	0 🗉	0.00	PR85 💌	0	0	OFF	1
3	S-CCPCH	17.6 kbps (SF 16)	I 🗐 🛛	0 🗉	0.00	PRBS 🗵	0	0	OFF	
4	FACH	17.6 kbps (SF 16)	0		0.00	PR8S 💌	0	0	OFF	
5	DL-DPCH	17.6 kbps (SF 16)	• ‡0	0 💌	0.00	PR8S 💌	0	0	OFF	
6	DL-OPCH	17.6 kbps (SF 16)	.	0 💌	0.00	PR8S 💌	0	0	OFF	
7	DL-DPCH	17.6 kbps (SF 16)	.	0 💌	0.00	PR8S 💌	0	0	OFF	
8	DL-DPCH	17.6 kbps (SF 16)	• •	0 🖻	0.00	PR8S 💌	0	0	OFF	
9	DL-DPCH	17.6 kbps (SF 16)	E 20	0 💌	0.00	PR8S 💌	0	0.	OFF	1.

Bild 2-4 WinIQSIM – Kanaleinstellungen in Slot 0

Hinweis: Der MA Shift-Parameter in WinlQSIM bezieht sich direkt auf die Anzahl der Bits, um die eine Basic-Midamble zyklisch verschoben wird. Dieser Parameter entspricht nicht dem Midamble-Shift-Parameter in der TD-SCDMA-Spezifikation und in der Applikations-Firmware R&SFS-K76 Basisstationstest für TD-SCDMA.

In den Slots 4, 5 und 6 sollen jeweils 8 Datenkanäle mit jeweils 1/8 der Gesamtleistung aktiviert werden. Jedem Kanal wird der MA Shift 48 zugeordnet, was der Midamble m(8) entspricht und eine gültige Common-Midamble-Allocation darstellt. Die Leistung der Kanäle muss nach Beenden der Einstellung durch Betätigung von **Adjust Total Power to 0 dB** normiert werden.

	On Syra	Shih Repetition M	¢1	Shou	ing Flep 🗐 🗍	_				
lunst Typ	xe 2 (L1 field:	not used)	dala 352		midembia 186		data 352		GP 16	field leng in chip
R	lepet Slot	Adjust Total P	ower to 0 dB		Chann	el Graph	Code C	Iomain		Page
CH NO	Туре	Gross Data Rate	Spr. Code	e MA Shift	Power/dB	Data	Sync Shift	TPC	State	C Scool
4	FACH	17.6 kbps (SF 16)	.	0 🗉	0.00	PR85 💌	0	0	OFF	1 🔺
5	DL-DPCH	17.6 kbps (SF 16)	I 1 0	48 💌	9.03	PR85 💌	0	0	ON	1 1
6	DL-DPCH	17.6 kbps (SF 16)	E 🗊	48 💌	-9.03	PR8S 💌	0	0	ON	
7	DL-DPCH	17.6 kbps (SF 16)	E 2	48 💌	9.03	PR8S 💌	0	0	ON	
8	DL-DPCH	17.6 kbps (SF 16)	3	48 💌	-9.03	PR8S 💌	0	0	ON	
9	DL-DPCH	17.6 kbps (SF 16)	■ \$4	48 💌	9.03	PR8S 💌	0	0	ON	
10	DL-DPCH	17.6 kbps (SF 16)	5	48 💌	9.03	PR8S 💌	0	0	ON	
11	DL-DPCH	17.6 kbps (SF 16)	6	48 💌	9.03	PR8S 💌	0	0	ON	
12	DL-DPCH	17.6 kbps (SF 16)	E \$7	48 💌	9.03	PR8S 💌	0	0	ON	
13	DL-DPCH	17.6 kbps (SF 16)	E 20	0 💌	0.00	PR8S 💌	0	0	OFF	

Bild 2-5 WinIQSIM – Kanaleinstellungen in den Slots 4-6

Nun sind noch die Trigger Settings unter dem Menü SMIQ und dem Unterpunkt Trigger Output Settings einzustellen. Hier wird für den Current Mode: Mode 1 die Restart Clock (SEQUENZ) definiert. Damit liegt der Trigger auf der Subframe-Grenze alle 5 ms am TRIG1 der R&S SMIQ Z5- BNC-Adapter zur Verfügung.

SMIQ Trigger Output
Trigger Out 1 Mode1 💌
Trigger Out 2 Mode1 💌
Current Mode Mode1
Bit Clock (BIT_CLK)
Symbol Clock (SYMB_CLK)
Stat Clock (SLOT_CLK)
Frame Clock (FRAM_CLK)
Restart Clock (SEQUENZ)
C User (PULSE) ON time €1 samples OFF time €1 samples
OK Carcel

Bild 2-6 WinIQSIM – Trigger-Einstellungen

Diese TD-SCDMA-Konfiguration via **File|Save Settings As** als Datei 'TDS_BS.IQS' abspeichern.

Den PC entweder seriell oder via IEC-Bus-Karte und IEC-Bus-Kabel mit dem R&S SMIQ verbinden und in dem Menü **SMIQ|TRANSMISSION** das erzeugte Signal unter dem Namen ' TDS_BS ' auf den R&S SMIQ laden.

Trigger Einstellungen definieren:

1300.7304.44

Speichern und auf R&S SMIQ übertragen:

Grundeinstellungen in der Betriebsart TD-SCDMA BTS

In der Grundeinstellung nach PRESET befindet sich der Analysator in der Betriebsart SPECTRUM. Die folgenden Grundeinstellungen der Code-Domain-Messung werden erst dann aktiviert, wenn die Betriebsart TD-SCDMA BTS über den Hotkey TDS BS gewählt wurde.

Parameter	Einstellung
Digitaler Standard	TD-SCDMA (3GPP)
Sweep	CONTINUOUS
CDP-Modus	CODE CHAN AUTOSEARCH
Triggereinstellung	FREE RUN
Scrambling Code	0
Max. Anzahl Midamble Shifts	16
Threshold für inaktiven Kanal	-40 dB
Kanal	1.16
Slot-Nummer	0
Capture Length	7 Slots
Auswertung	Screen A: CODE PWR RELATIVE
	Screen B: RESULT SUMMARY

 Tabelle 2-1
 Grundeinstellung der Code-Domain-Messung nach Preset

Bei der Darstellung der Einstellungen am Analysator gelten folgende Konventionen:

[<taste>]</taste>	Drücken einer Taste an der Frontplatte, z.B. [FREQ]
[<softkey>]</softkey>	Drücken eines Softkeys, z.B. <i>[MARKER -> PEAK]</i>
[<nn unit="">]</nn>	Eingabe eines Wertes + Abschluss der Eingabe mit der Einheit, z.B. [12 kHz]

Bei der Darstellung der Einstellungen am R&S SMIQ gelten folgende Konventionen:

[<taste>]</taste>	Drücken einer Taste an der Frontplatte, z.B. [FREQ]
<menü></menü>	Auswahl eines Menüs, Parameters oder einer Einstellung, z.B. <i>DIGITAL STD.</i> Die Menüebene ist durch Einrücken gekennzeichnet.
<nn unit=""></nn>	Eingabe eines Wertes + Abschluss der Eingabe mit der Einheit, z.B. 12 kHz

Um zu synchronisieren, muss der Kanal 1.16 in Slot 0 aktiv sein.

Messung 1: Messung der Leistung des Signals

Die Messung des Spektrums bietet eine Übersicht über das TD-SCDMA-Signal und die trägernahen Nebenaussendungen.

Messaufbau	 HF-Ausgang des R&S S verbinden (Koaxialkabel n Externe Triggerung des des R&S SMIQ (TRIGOU 	SMIQ mit dem HF-Eingang des Analysators mit N-Verbindungen). Analysators (EXT TRIG GATE) mit Trigger IT1 auf PAR DATA) verbinden.
Einstellung am R&S SMIQ:	[PRESET] [LEVEL: [FREQ: ARB MOD SET SMIQ ACCORDING SET SMIQ ACCOR TRIGGER OUT (Diese Einstellungen sind m nötig und dienen dazu, im A aus der durch WinIQSIM g Dies ist vor allem dann Waveforms gewechselt wird.	0 dBm] 2020.0 MHz] G TO WAVEFORM DING TO WAVEFORM ON T MODE ON ur einmal nach dem Preset des Generators RB MOD die Trigger-Einstellung automatisch enerierten Waveform-Datei zu übernehmen. angenehm, wenn zwischen verschiedenen .)
	SELECT WAVEFORM STATE: ON	Name 'TDS_BS' auswählen
Einstellung am Analysator:	[PRESET] [FREQUENCY: [TDS BS] [AMPT: [MEAS: [ADAPT TO SIGNAL] [AUTO LEVEL&TIME] [START SLOT: [STOP SLOT:	2020.0 MHz] REF LEVEL] POWER] 4] 6]
Messung am Analysator:	Dargestellt wird:Das Spektrum des TD-SCDie Kanalleistung innerhal	DMA-Signals über die Slots 4 bis 6 b der 1.6 MHz Bandbreite

Messung 2: Messung der Spektrum-Emission-Mask

In der TD-SCDMA-Spezifikation wird eine Messung vorgeschrieben, die im Bereich von mindestens ±4.0 MHz um den TD-SCDMA-Träger herum die Einhaltung einer spektralen Maske überwacht. Für die Beurteilung der Leistungsaussendungen wird die Signalleistung mit einem 30 kHz-Filter im Bereich bis 2.3 MHz und mit einem 1 MHz-Filter im Bereich von 2.3 MHz bis 4 MHz gemessen. Die entstehende Kurve wird mit einer in der TD-SCDMA-Spezifikation definierten Grenzwertlinie verglichen.

Messaufbau	 > HF-Ausgang des R&S SMIQ mit dem HF-Eingang des Analysator verbinden (Koaxialkabel mit N-Verbindungen). > Externe Triggerung des Analysators (EXT TRIG GATE) mit Trigge des R&S SMIQ (TRIGOUT1 auf PAR DATA) verbinden. 				
Einstellung am R&S SMIQ:	Einstellungen wie bei Messu	ng 1			
Einstellung am Analysator:	[PRESET] [FREQUENCY: [TDS BS] [AMPT: [MEAS: [ADAPT TO SIGNAL] [AUTO LEVEL&TIME] [START SLOT: [STOP SLOT:	2020.0 MHz] REF LEVEL] SEPCTRUM EM MASK] 4] 6]			
Messung am Analysator:	Dargestellt wird: • Das Spektrum des TD-SC	DMA-Signals über die Slots 4 bis 6			

- Die in der Norm definierte Grenzwertlinie
- Eine Aussage über die Verletzung der Grenzwertlinie (Passed/Failed)

Messung 3: Messung der relativen Code-Domain-Power und des Frequenzfehlers

Im folgenden wird eine Messung der Code-Domain-Power gezeigt. Dabei werden die grundlegenden Parameter der CDP-Messungen, die eine Analyse des Signals ermöglichen, nacheinander von an das Messsignal angepassten Werten auf nicht angepasste verstellt, um die entstehenden Effekte zu demonstrieren.

Einstellung am R&S SMIQ:	RF-Ausgang overbinden.	des R&S	SMIQ	mit d	dem	RF-Eingang	des	Analysators
Einstellung am R&S SMIQ:	Einstellungen	wie bei Me	ssung ´	1				
Einstellung am Analysator:	[PRESET] [FREQUENCY [TDS BS] [AMPT: [SELECT SLO	/: T:	20 RE 4]	20.0 N EF LE\	MHz] VEL			
Messung am Analysator:	Dargestellt wire	d:						
	Screen A: Screen B:	Code-Dor Numerisc Frequenz	nain-Po he Erge fehlers	ower d ebniss	les Si se de	ignals in Slot r CDP-Mess	4 ung i	nklusive des

Einstellung: Synchronisation der Referenzfrequenzen

Eine Synchronisation von Sender und Empfänger auf die gleiche Referenzfrequenz reduziert den Frequenzfehler.

Messaufbau	Referenzeingang (EXT REF IN/OUT) auf der Geräterückseite des Analysators mit dem Referenzausgang (REF) auf der Geräterückseite des R&S SMIQ verbinden (Koaxialkabel mit BNC-Verbindungen).							
Einstellung am R&S SMIQ:	Einstellungen wie bei Messung 1							
Einstellung am Analysator:	Wie in Messur [SETUP:	ng 3, zusätzlich RE	FEREI	NCE EXT]				
Messung am Analysator:	Screen B:	Frequency error: < 10 Hz sein.	Der	angezeigte	Frequenzfehler	soll		

Die Referenzfrequenzen des Analysators und des Messobjektes sollten synchronisiert sein.

Einstellung: Verhalten bei einer abweichenden Mittenfrequenzeinstellung

In der folgenden Einstellung wird das Verhalten bei abweichender Mittenfrequenzeinstellung von Messobjekt und Analysator gezeigt.

Einstellung am R&S SMIQ:		Mittenfrequenz des Messsenders in 0.5 kHz-Schritten verstimmen und dabei den Bildschirm des Analysators beobachten:
Messung am Analysator:	•	Bis etwa 4.5 kHz Frequenzfehler ist eine CDP-Messung am Analysator noch möglich. Ein Unterschied in der Messgenauigkeit der CDP-Messung ist bis zu diesem Frequenzfehler nicht ersichtlich.
	•	Ab 4.5 kHz Frequenzoffset steigt die Wahrscheinlichkeit einer Fehlsynchronisation. Die Meldung 'SYNC FAILED' erscheint.
	•	Ab etwa 5 kHz Frequenzfehler wird eine CDP-Messung unmöglich. Die Meldung 'SYNC FAILED' erscheint.
Einstellung am R&S SMIQ:	۶	Mittenfrequenz des Messsenders wieder auf 2020.0 MHz einstellen:[FREQ:2020.0 MHz]

Die Mittenfrequenz des Analysators muss bis auf 4.5 kHz Offset mit der Frequenz des Messobjektes übereinstimmen.

Einstellung: Verhalten bei falschem Scrambling-Code

Eine gültige Messung kann nur dann durchgeführt werden, wenn der am Analysator eingestellte Scrambling-Code mit dem des Sendesignals übereinstimmt.

Einstellung am R&S SMIQ	Einstellungen wie bei Messung 1				
Einstellung am Analysator:	Scrambling-Code auf einen falschen Wert setzen:				
	[SETTINGS:	SCRAMBLING CODE 1]			
Messung am Analysator:	Die Meldung 'SYNC FAIL falscher Scrambling-Code Signals mit falscher Kanalbe	ED' erscheint. In einigen Fällen führt ein jedoch wieder zur Anzeige eines gültigen legung!			
Einstellung am Analysator:	Scrambling-Code auf den ric	chtigen Wert setzen:			
	[SETTINGS:	SCRAMBLING CODE 0]			
Messung am Analysator:	Die CDP-Darstellung zeigt w	rieder das Test-Modell.			

Die Einstellung des Scrambling-Codes am Analysator muss mit dem Scrambling-Code des zu messenden Signals übereinstimmen.

Messung 4: Messung des Composite EVM

Composite EVM ist die in der TD-SCDMA-Spezifikation vorgeschriebene Messung des mittleren quadratischen Fehlers des Gesamtsignals.

Aus den demodulierten Daten wird ein ideales Referenzsignal generiert. Mess- und Referenzsignal werden miteinander verglichen; die quadratische Abweichung ergibt die Messung Composite EVM.

- Messaufbau > RF-Ausgang des R&S SMIQ mit dem RF-Eingang des Analysators (Koaxialkabel mit N-Verbindungen) verbinden
- Einstellung am R&S SMIQ: Einstellungen wie bei Messung 1

Einstellung am Analysator:	[PRESET] [FREQUENCY [TDS BS] [AMPT: [RESULTS [SELECT SLO	/:)T:	2020.0 MHz] REF LEVEL COMPOSITE EVM] 4]		
Messung am Analysator:	Dargestellt wir	d:			
	Screen A:	Code-Domain	ain-Power des Signals in Slot 4		
	Screen B:	Composite EVM (EVM über das Gesamts			

Hinweis: In inaktiven Slots ist die EVM-Messung sinnlos. Es wird kein Wert angezeigt.

Messung 5: Messung des Peak-Code-Domain-Errors

Bei der Peak-Code-Domain-Error-Messung wird aus den demodulierten Daten ein ideales Referenzsignal generiert. Mess- und Referenzsignal werden miteinander verglichen; die Differenz beider Signale wird auf die Klasse des Spreading-Faktors 16 projiziert. Durch Summation über die Symbole jedes Slots des Differenzsignals und Suche nach dem maximalen Fehlercode ergibt sich die Messung Peak Code Domain Error.

Messaufbau	RF-Ausgang d	les R&S	SMIQ	mit o	dem	RF-Eingang	des	Analysators
	(Koaxialkabel r	nit N-Ver	bindung	gen)	verbi	inden		

Einstellung am R&S SMIQ:	Einstellungen	ng 1			
Einstellung am Analysator:	[PRESET] [FREQUENCY: [TDS BS]		2020.0 MHz]		
	[AMPT: [RESULTS [SELECT SLO	DT:	REF LEVEL PK CODE DOM ERROR] 4]		
Messung am Analysator:	Dargestellt wir	d:			
	Screen A:	Code-Domair	ain-Power des Signals in Slot 4		
	Screen B:	Peak-Code-Domain-Error (bei Spreading-Faktor			

Hinweis: In inaktiven Slots ist die Peak-Code-Domain-Error-Messung sinnlos. Es wird kein Wert angezeigt.

Messung 6: Messung des RHO-Faktors

Im folgenden wird eine Messung des RHO-Faktors gezeigt.

Einstellung am R&S SMIQ:	 RF-Ausgan verbinden. 	g des R&S	SMIQ m	it dem	RF-Eingang	des	Ana	lysato	rs
Einstellung am R&S SMIQ:	Einstellungen	wie bei Mess	ung 1						
Einstellung am Analysator:	[PRESET] [FREQUENCY [TDS BS] [AMPT: [SELECT SLC	7: DT:	2020.0 REF LI 4]	MHz] EVEL					
Messung am Analysator:	Dargestellt wir	d:							
	Screen A:	Code-Doma	ain-Power	des Sig	nals in Slot 4	1			
	Screen B:	Numerische inklusive de	e Ergebni s RHO-Fa	isse de aktors	r CDP-Mes	sung	in	Slot	4

3 Messaufbau für Basisstationstests

Achtung:

Vor der Inbetriebnahme des Gerätes ist darauf zu achten, dass

- die Abdeckhauben des Gehäuses aufgesetzt und verschraubt sind,
- die Belüftungsöffnungen frei sind,
- an den Eingängen keine Signalspannungspegel über den zulässigen Grenzen anliegen.
- die Ausgänge des Gerätes nicht überlastet werden oder falsch verbunden sind.

Ein Nichtbeachten kann zur Beschädigung des Geräts führen.

Dieses Kapitel beschreibt die Grundeinstellungen des Analysators für den Betrieb als TD-SCDMA Basisstationstester. Eine Voraussetzung für den Start der Messungen ist, dass der Analysator korrekt konfiguriert und mit Spannung versorgt ist, wie im Kapitel 1 des Bedienhandbuchs für das Grundgerät beschrieben. Darüber hinaus muss die Applikations-Firmware R&S FS-K76 freigeschaltet sein. Die Installation und Freischaltung der Applikations-Firmware ist in Kapitel 1 dieser Softwarebeschreibung erklärt.

Standard-Messaufbau

Bild 3-1 BTS Messaufbau

FS-K76

Den Antennenausgang (bzw. TX-Ausgang) der Basisstation über ein Leistungsdämpfungsglied geeigneter Dämpfung mit dem HF-Eingang des Analysators verbinden.

Die folgenden Pegelwerte für externe Dämpfung werden empfohlen, um sicherzustellen, dass der HF-Eingang des Analysators geschützt ist und die Empfindlichkeit des Gerätes nicht zu stark zu beeinträchtigt wird:

Max. Leistung	Empfohlene externe Dämpfung
\geq 55 bis 60 dBm	35 bis 40 dB
\geq 50 bis 55 dBm	30 bis 35 dB
\geq 45 bis 50 dBm	25 bis 30 dB
\geq 40 bis 45 dBm	20 bis 25 dB
\geq 35 bis 40 dBm	15 bis 20 dB
\geq 30 bis 35 dBm	10 bis 15 dB
\geq 25 bis 30 dBm	5 bis 10 dB
\geq 20 bis 25 dBm	0 bis 5 dB
< 20 dBm	0 dB

- Wenn Signale am Ausgang von Vierpolen gemessen werden, sollten die Referenzfrequenz der Signalquelle mit dem Referenzeingang des Analysators auf der Rückseite (EXT REF IN/OUT) verbunden werden.
- Zur Einhaltung der in der TD-SCDMA-Spezifikation geforderten Fehlergrenzen bei der Frequenzmessung an Basisstationen ist der Analysator an einer externen Referenz zu betreiben. Als Referenzquelle kann z. B. ein Rubidiumnormal verwendet werden.
- Wenn die Basisstation über einen Triggerausgang verfügt, den Triggerausgang der Basisstation mit dem Triggereingang des Analysators auf der Rückseite (*EXT TRIG GATE*) verbinden.

Voreinstellung

۶	Die externe Dämpfung eingeben.	[AMPT] [NEXT] [REF LVL OFFSET].
۶	Den Referenzpegel eingeben.	[AMPT]
\triangleright	Die Mittenfrequenz eingeben.	[FREQUENCY]
۶	Den Trigger einstellen.	[TRIG]
\triangleright	Bei Verwendung, ext. Referenz einschalten.	[SETUP] [REF: EXT]
۶	Den Standard und die gewünschte Messung wählen.	[TDS BS] [RESULTS]
۶	Den Scrambling-Code einstellen.	[SETTINGS] [SCRAMBLING CODE]
\triangleright	Die maximale Anzahl Midambles einstellen.	[SETTINGS] [MA SHIFTS CELL]

4 Menü-Übersicht

Die Applikations-Firmware R&S FS-K76 (TD-SCDMA Basisstationstests) erweitert den Analysator um RF-Messungen und Code-Domain-Power Messungen für den Mobilfunkstandard TD-SCDMA Forward Link.

Bild 4-1 Hotkeyleiste mit freigeschalteter Applikations-Firmware R&S FS-K76

Nach Aufruf der Applikations-Firmware über den Hotkey *TDS BS* wird eine neue Hotkeyleiste am unteren Bildschirmrand eingeblendet und der Code-Domain-Analyzer wird ausgewählt und gestartet.

Bild 4-2 Übersicht der Menüs in der Applikations-Firmware R&S FS-K76

Für den Code-Domain-Analyzer existieren verschiedene Auswertungen. Diese sind über den Hotkey *RESULTS* selektierbar. Der Hotkey *SETTINGS* erlaubt, die Applikations-Firmware zu parametrisieren. In diesem Menu kann zum Beispiel der Scrambling-Code der Basisstation eingestellt werden. Der Hotkey *CHAN CONF* dient der Einstellung des Kanalsuchmodus für den Code-Domain-Analyzer. Zusätzlich können auch eigene Kanaltabellen definiert werden.

Der Hotkey MEAS ist gleichbedeutend mit der Taste MEAS (rechts auf der Frontplatte) und er dient der Auswahl der verschiedenen RF-Messungen oder des Code-Domain-Analyzers.

Bei Anwahl des Hotkeys CHAN CONF oder RESULTS wird automatisch auf den Code-Domain-Analyzer umgeschaltet.

Ein Drücken des Hotkeys *EXIT TDS* führt zum Verlassen der R&S FS-K76. Die Hotkey-Leiste des Grundgerätes wird wieder eingeblendet und der Analysator geht in die Standardbetriebsart SPECTRUM über.

Übergang von der Betriebsart SPECTRUM in die Applikations-Firmware:

Folgende benutzerspezifische Einstellungen werden nicht geändert, so dass die Anpassung an das Messobjekt erhalten bleibt:			
Reference Level + Rev Level Offset			
Center Frequency + Frequency Offset			
Input Attenuation + Mixer Level			
Folgende benutzerspezifische Einstellungen werden wie folgt überführt:			
Externe Triggerquellen bleibt erhalten, alle anderen Triggerquellen resultieren in den Free Run Modus.			
Zusätzliche Triggereinstellungen bleiben erhalten.			

Übergang von der Applikations-Firmware in die Betriebsart SPECTRUM:

Folgende benutzerspezifische Einstellungen werden nicht geändert, so dass die Anpassung an das Messobjekt erhalten bleibt: Reference Level + Rev Level Offset Center Frequency + Frequency Offset Input Attenuation + Mixer Level Folgende benutzerspezifische Einstellungen werden wie folgt überführt: Die Triggerquelle wird auf FREE RUN geschaltet und es wird ein Analyzer Frequency Sweep eingestellt mit dem SPAN gleich der doppelten Center Frequency, bzw. dem maximal möglichen Span, so dass auf jeden Fall die Center Frequency unverändert bleibt.

Die in der R&S FS-K76 verfügbaren Messungen sind über den Hotkey MEAS bzw. die Taste MEAS anwählbar:

Bild 4-3 Übersicht der Menüs

5 Konfiguration der TD-SCDMA-Messungen

Die wichtigsten Messungen der TD-SCDMA-Spezifikationen für Basisstationen sind über den Hotkey *MEAS* und die Taste *MEAS* auswählbar. Sie werden im folgenden anhand der Softkey-Funktionen erläutert.

Der Softkey *CODE DOM ANALYZER* aktiviert den Code-Domain-Analyzer und führt in die Untermenüs zur Auswahl der Auswertung. Durch eine Änderung der Belegung der Hotkey-Leiste beim Übertritt in die Applikation wird sichergestellt, dass die wichtigsten Parameter des Code-Domain-Analyzers direkt über die Hotkey-Leiste erreichbar sind.

Die Softkeys POWER, ACLR, SPECTRUM EM MASK, OCCUPIED BANDWIDTH, und POWER VS *TIME* aktivieren Basisstationsmessungen mit vordefinierten Einstellungen, die im SPECTRUM-Modus des Grundgerätes durchgeführt werden. Die Messungen werden mit den in der TD-SCDMA-Spezifikation vorgeschriebenen Parametern durchgeführt. Eine nachträgliche Änderung der Einstellungen ist möglich.

Taste *MEAS* oder Hotkeys *MEAS*

Der Hotkey *MEAS* oder die Taste *MEAS* öffnen ein Untermenü zur Auswahl der Messungen:

- *POWER* aktiviert die Messung der Kanalleistung mit definierten Voreinstellungen in der Betriebsart SPECTRUM.
- *ACLR* aktiviert die Messung der Nachbarkanalleistung mit definierten Voreinstellungen in der Betriebsart SPECTRUM.
- SPECTRUM EM MASK nimmt einen Vergleich der Signalleistung in verschiedenen Offset-Bereichen vom Träger mit den durch die TD-SCDMA-Spezifikation vorgegebenen Maximalwerten vor.
- OCCUPIED BANDWIDTH aktiviert die Messung der durch das Signal belegten Bandbreite.
- *POWER VS TIME* aktiviert die Messung der Signalleistung über der Zeit mit der durch die TD-SCDMA-Spezifikation vorgegebenen Zeitmaske.
- CODE DOM ANALYZER aktiviert den Code-Domain-Analyzer und öffnet ein weiteres Menü zur Wahl der Auswertungsart. Alle weiteren Menüs des Analysators werden an die Funktionen der Betriebsart Code-Domain-Analyzer angepasst. Der Code-Domain-Analyzer ist in einem separaten Kapitel ab Seite 45 beschrieben.
- *SIGNAL STATISTIC* wertet das Signal hinsichtlich seiner statistischen Eigenschaften aus (Verteilungsfunktion der Signalamplituden).

Messung der Kanalleistung

Taste MEAS oder Hotkey MEAS

Bild 5-1 Messung der Leistung über 1.6 MHz Bandbreite.

Der Softkey aktiviert die Betriebsart SPECTRUM mit definierten I	Einstellungen:
--	----------------

Folgende benutzerspezifische E	instellungen werden nicht geändert, so dass die Anpassung an	
das Messobjekt erhalten bleibt:		
Reference Level + Rev	/ Level Offset	
Center Frequency + Frequency Offset		
Input Attenuation + Mix	ker Level	
ADJACENT CHAN POWER	ON	
FREQUENCY SPAN	3 MHz	
TRIGGER	EXTERN	
Ausgehend von dieser Eins in der Betriebsart SPECTF können an die Erforderniss	stellung kann der Analysator in allen Funktionen, die er RUM bietet, bedient werden, d.h. alle Messparameter e der spezifischen Messung angepasst werden.	

IEC-Bus-Befehl: :CONFigure:CDPower:MEASurement POWer

Ergebnisabfrage:

:CALCulate:MARKer:FUNCtion:POWer:RESult? CPOWer

Die Guard-Periode des Stop-Slots wird von der Messung ausgeschlossen. Die Sweepzeit wird an die Gate-Länge angepasst, so dass für jeden Sweeppunkt alle ausgewählten Slots durchlaufen werden.

Der Softkey AUTO LEVEL&TIME startet die Auto-Range-Routine für den Referenz-Level. Sie stellt zudem den Bezug zwischen Trigger und Subframe-Start her.

IEC-Bus-Befehl: :[SENSe:]POWer:ACHannel:AUTO:LTIMe

Der Softkey *START SLOT* erlaubt die Eingabe des Start-Slots für den Gated Sweep Mode. Nur zwischen START SLOT und STOP SLOT ist der Gated Mode On. Für die restlichen Slots eines Subframes ist der Gated Mode Off.

IEC-Bus-Befehl: :[SENSe:]POWer:ACHannel:SLOT:START 1...7

Der Softkey *STOP SLOT* erlaubt die Eingabe des Stop-Slots für den Gated Sweep Mode. Nur zwischen START SLOT und STOP SLOT ist der Gated Mode On. Für die restlichen Slots eines Subframes ist der Gated Mode Off.

IEC-Bus-Befehl: : [SENSe:]POWer:ACHannel:SLOT:STOP 1...7

А

JAT

rrg

Messung der Nachbarkanalleistung - ACLR

Bild 5-2 Messung der Nachbarkanalleistung

Der Softkey aktiviert die Betriebsart SPECTRUM mit definierten Einstellungen:

Folgende benutzerspezifische Einstellungen werden nic Anpassung an das Messobjekt erhalten bleibt: Reference Level + Rev Level Offset Center Frequency + Frequency Offset Input Attenuation + Mixer Level	ht geändert, so dass die
ADJACENT CHAN POWER	ON
ACP STANDARD	TD-SCDMA
NO OF ADJ CHANNELS	2
TRIGGER	EXTERN
EXT GATE	ON

Tabelle 5-1

Default ACLR Einstellungen

Nachbarkanaltyp	Spacing	RBW	Abs. Limit
Adjacent	±1.6 MHZ	30 kHz	-15.2 dBm
Alternate	±3.2 MHZ	30 kHz	-15.2 dBm

Ausgehend von dieser Einstellung kann der Analysator in allen Funktionen, die er in der Betriebsart SPECTRUM bietet, bedient werden, d.h., alle Messparameter können an die Erfordernisse der spezifischen Messung angepasst werden.

IEC-Bus-Befehl: :CONFigure:CDPower:MEASurement ACLR
Ergebnisabfrage: :CALCulate:MARKer:FUNCtion:POWer:RESult? ACPower

Der Softkey NO. OF ADJ CHAN aktiviert die Eingabe der Anzahl ±n der Nachbarkanäle, die für die Nachbarkanalleistungsmessung berücksichtigt werden.

Möglich sind die Eingaben 0 bis 3.

Folgende Messungen werden abhängig von der Anzahl der Kanäle durchgeführt.

- 0 Nur die Kanalleistung wird gemessen.
- 1 Die Kanalleistung und die Leistung des oberen und unteren Nachbarkanals (adjacent channel) werden gemessen.
- 2 Die Kanalleistung, die Leistung des unteren und oberen Nachbarkanals und des nächsten unteren und oberen Kanals (alternate channel 1) werden gemessen.
- 3 Die Kanalleistung, die Leistung des unteren und oberen Nachbarkanals, des nächsten unteren und oberen Kanals (alternate channel 1) und des übernächsten unteren und oberen Nachbarkanals (alternate channel 2) werden gemessen.

IEC-Bus-Befehl: :SENS:POW:ACH:ACP 2

Der Softkey ADJUST SETTINGS optimiert automatisch die Geräteeinstellungen des Analysators für die gewählte Leistungsmessung.

Alle zur Leistungsmessung innerhalb eines bestimmten Frequenzbereichs (Kanalbandbreite) relevanten Einstellungen des Analysators werden dann in Abhängigkeit der Kanalkonfiguration (Kanalbandbreite, Kanalabstand) optimal eingestellt:

• Frequenzdarstellbereich:

Der Frequenzdarstellbereich muss mindestens alle zu betrachtenden Kanäle umfassen. Bei der Messung der Kanalleistung wird als Span die zweifache Kanalbandbreite eingestellt. Die Einstellung des Spans bei der Nachbarkanalleistungsmessung ist abhängig vom Kanalabstand und der Kanalbandbreite des vom Übertragungskanal am weitesten entfernten Nachbarkanals ADJ, ALT1 oder ALT2.

- Auflösebandbreite RBW \leq 1/40 der Kanalbandbreite
- Videobandbreite $VBW \ge 3 \times RBW$.
- Detektor RMS-Detektor

Die Trace-Mathematik und die Trace-Mittelung werden ausgeschaltet. Der Referenzpegel wird durch *ADJUST SETTINGS* nicht beeinflusst. Er ist durch *AUTO LEVEL&TIME* separat einzustellen.

Die Anpassung erfolgt einmalig; im Bedarfsfall können die Geräteeinstellungen anschließend wieder verändert werden.

IEC-Bus-Befehl: :SENS: POW: ACH: PRES ACP | CPOW | OBW

Bei manueller Einstellung der Messparameter abweichend von der mit *ADJUST SETTINGS* vorgenommenen ist für die verschiedenen Parameter folgendes zu beachten:

Frequenzdarstellbereich Die Frequenzdarstellbereich muss mindestens die zu messenden Kanäle umfassen. Bei Messung der Kanalleistung ist dies die Kanalbandbreite. Ist die Frequenzdarstellbreite im Vergleich zum betrachteten Frequenzausschnitt (bzw. zu den Frequenzausschnitten) groß, so stehen zur Messung nur noch wenige Punkte der Messkurve zur Verfügung. Auflösebandbreite (RBW) Um sowohl eine akzeptable Messgeschwindigkeit als auch die nötige Selektion (zur Unterdrückung von spektralen Anteilen außerhalb des zu messenden Kanals, insbesondere der Nachbarkanäle) sicherzustellen, darf die Auflösebandbreite weder zu klein noch zu groß gewählt werden. Als Daumenregel ist die Auflösebandbreite auf Werte zwischen 1 % und 4 % der Kanalbandbreite einzustellen. Die Auflösebandbreite kann dann größer eingestellt werden, wenn das Spektrum innerhalb und um den zu messenden Kanal einen ebenen Verlauf hat. Für eine korrekte Leistungsmessung darf das Videosignal nicht bandbegrenzt Videobandbreite (VBW) werden. Eine Bandbegrenzung des logarithmischen Videosignals würde zu einer Mittelung führen und damit zu einer zu geringen Anzeige der Leistung (-2,51 dB) bei sehr kleiner Videobandbreite). Die Videobandbreite muss daher mindestens das Dreifache der Auflösebandbreite betragen. Softkey ADJUST SETTINGS stellt die Videobandbreite (VBW) in Abhängigkeit der Kanalbandbreite wie folgt ein: $VBW \ge 3 \times RBW$ Detektor Der Softkey ADJUST SETTINGS wählt den RMS-Detektor aus. Der RMS-Detektor wird deshalb gewählt, weil er unabhängig von der Signalcharakteristik des zu messenden Signals immer korrekt die Leistung anzeigt. Prinzipiell wäre auch der Sample-Detektor möglich. Dieser führt aber aufgrund der begrenzten Anzahl von Trace-Pixels zur Berechnung der Leistung im Kanal zu instabileren Ergebnissen. Eine Mittelung, die oft zur Stabilisierung der Messergebnisse durchgeführt wird, resultiert in einer zu geringen Pegelanzeige und muss daher vermieden werden. Die Pegelminderanzeige ist abhängig von der Anzahl der Mittelungen und

der Signalcharakteristik im zu messenden Kanal.

Konfiguration der TD-SCDMA-Messungen

Der Softkey SWEEP TIME aktiviert die Eingabe der Sweepzeit. Mit dem RMS-Detektor führt eine längere Sweepzeit zu stabileren Messergebnissen.

Diese Einstellung ist identisch zur Einstellung SWEEP TIME MANUAL im Menü BW.

IEC-Bus-Befehl: :SWE:TIME <value>

Der Softkey NOISE CORR ON/OFF schaltet die Korrektur der Messergebnisse um das Eigenrauschen des Gerätes ein und erhöht dadurch die Messdynamik.

Beim Einschalten der Funktion wird zunächst eine Referenzmessung des Eigenrauschens des Gerätes vorgenommen. Die gemessene Rauschleistung wird anschließend von der Leistung im betrachteten Kanal subtrahiert. Das Eigenrauschen des Gerätes ist von der gewählten Mittenfrequenz, Auflösebandbreite und Pegeleinstellung abhängig. Daher wird die Korrektur bei jeder Veränderung dieser Einstellungen abgeschaltet, eine entsprechende Meldung erscheint auf dem Bildschirm.

Um die Korrektur des Eigenrauschens mit der geänderten Einstellung wieder einzuschalten muss der Softkey erneut gedrückt werden. Die Referenzmessung wird dann erneut durchgeführt.

IEC-Bus-Befehl: :SENS:POW:NCOR ON

Der Softkey *FAST ACLR* schaltet zwischen der Messung nach der IBW-Methode (FAST ACLR OFF) und der Messung im Zeitbereich (FAST ACLR ON) um.

Bei *FAST ACLR ON* erfolgt die Messung der Leistung in den verschiedenen Kanälen im Zeitbereich. Der Analysator stellt seine Mittenfrequenz der Reihe nach auf die verschiedenen Kanal-Mittenfrequenzen und misst dort die Leistung mit der eingestellten Messzeit (= Sweep Time/Anzahl der gemessenen Kanäle). Dabei werden automatisch die für den gewählten Standard und Frequenzoffset geeigneten RBW-Filter verwendet.

Zur korrekten Leistungsmessung wird der RMS-Detektor verwendet. Damit sind keinerlei Software-Korrekturfaktoren notwendig.

Die Messwertausgabe erfolgt in Tabellenform, wobei die Leistung im Nutzkanal in dBm und die Leistungen in den Nachbarkanälen in dBm (ACLR ABS) oder dB (ACLR REL) ausgegeben werden.

Die Wahl der Sweepzeit (= Messzeit) hängt ab von der gewünschten Reproduzierbarkeit der Messergebnisse. Je länger die Sweepzeit gewählt wird, desto reproduzierbarer werden die Messergebnisse, da die Leistungsmessung dann über eine längere Zeit durchgeführt wird.

Als Faustformel kann für eine Reproduzierbarkeit von 0.5 dB (99 % der Messungen liegen innerhalb von 0.5 dB vom wahren Messwert) angenommen werden, dass ca. 500 unkorrelierte Messwerte notwendig sind (gilt für weißes Rauschen). Als unkorreliert werden die Messwerte angenommen, wenn deren zeitlicher Abstand dem Kehrwert der Messbandbreite entspricht (=1/BW).

IEC-Bus-Befehl: :SENS:POW:HSP ON

Der Softkey DIAGRAM FULL SIZE schaltet das Diagramm auf volle Bildschirmgröße um.

IEC-Bus-Befehl: :DISP:WIND1:SIZE LARG :DISP:WIND1:SIZE SMAL

FS-K76

ADAPT TO SIGNAL	Der Softkey ADAPT TO SIGNAL öffnet ein Untermenü zur Anpassung des Referenzpegels des Analysators sowie zur Konfiguration des Gated Sweep Mode.
START S	Der Softkey AUTO LEVEL & TIME startet die Auto-Range-Routine für den Referenz-Level. Sie stellt zudem den Bezug zwischen Trigger und Subframe-Start her.
	Der Softkey START SLOT erlaubt die Eingabe des Start-Slots für den Gated Sweep Mode. Nur zwischen START SLOT und STOP SLOT ist der Gated Mode On. Für die restlichen Slots eines Subframes ist der Gated Mode Off.
	 Der Softkey STOP SLOT erlaubt die Eingabe des Stop-Slots für den Gated Sweep Mode. Nur zwischen START SLOT und STOP SLOT ist der Gated Mode On. Für die restlichen Slots eines Subframes ist der Gated Mode Off.
	IEC-Bus-Befehl::[SENSe:]POWer:ACHannel:AUTO:LTIMe :[SENSe:]POWer:ACHannel:SLOT:START 17 :[SENSe:]POWer:ACHannel:SLOT:STOP 17

Softkey ACLR LIMIT CHECK schaltet die Grenzwertüberprüfung der ACLR-Messung ein bzw. aus.

IEC-Bus-Befehl: :CALC:LIM:ACP ON :CALC:LIM:ACP:ACH:RES? :CALC:LIM:ACP:ALT:RES?

Die Grundeinstellung der Grenzwerte wird beim Betreten der Nachbarkanalleistungsmessung wie in der Tabelle aus Seite 30 definiert. Zusätzlich kann in der ACLR Messung über den Softkey *EDIT ACLR LIMITS* eine Tabelle geöffnet werden, in denen Grenzwerte für die ACLR-Messung verändert werden können..

ACP LIMITS				
CHAN	RELATIVE LIMIT CHECK		ABSOLUTE LIMIT CHECK	
	VALUE	ON	VALUE	ON
ADJ	0 dBc		-15.2 dBm	×
ALT1	0 dBc		-15.2 dBm	×
ALT2	0 dBc		0 dBm	

Folgende Regeln gelten für die Grenzwerte:

- Für jeden der Nachbarkanäle kann ein eigener Grenzwert bestimmt werden. Der Grenzwert gilt für den unteren und den oberen Nachbarkanal gleichzeitig.
- Es kann ein relativer Grenzwert und/oder ein absoluter Grenzwert definiert werden. Die Überprüfung beider Grenzwerte kann unabhängig voneinander aktiviert werden.
- Die Einhaltung der aktiven Grenzwerte wird unabhängig davon gepr
 üft, ob die Grenzwerte absolut oder relativ sind und ob die Messung selbst in absoluten Pegeln oder relativen Pegelabst
 änden durchgef
 ührt wird. Sind beide Überpr
 üfungen aktiv und ist der h
 öhere von beiden Grenzwerten
 überschritten, so wird der betroffene Messwert gekennzeichnet.

Hinweis: Messwerte, die den Grenzwert verletzen, werden mit einem vorangestellten Stern und roter Schrift gekennzeichnet.

IEC-Bus-Befehl: :CALC:LIM:ACP ON :CALC:LIM:ACP:ACH 0dB,0dB :CALC:LIM:ACP:ACH:STAT ON :CALC:LIM:ACP:ACH:ABS -10dBm,-10dBm :CALC:LIM:ACP:ACH:ABS:STAT ON :CALC:LIM:ACP:ALT1 0dB,0dB :CALC:LIM:ACP:ALT1:STAT ON :CALC:LIM:ACP:ALT1:ABS -10dBm,-10dBm :CALC:LIM:ACP:ALT1:ABS:STAT ON :CALC:LIM:ACP:ALT2 0dB,0dB :CALC:LIM:ACP:ALT2:STAT ON :CALC:LIM:ACP:ALT2:ABS -10dBm,-10dBm :CALC:LIM:ACP:ALT2:ABS:STAT ON

Der Softkey ADJ CHAN SPACING öffnet eine Tabelle zum Festlegen der Kanalabstände.

CHANNEL SPACING		
CHAN	SPACING	
ADJ	1.6 MHz	
ALT1	3.2 MHz	
ALT2	4.8 MHz	

Da die Nachbarkanäle oft untereinander die gleichen Abstände haben, werden mit der Eingabe des Nachbarkanalabstands (ADJ) der Kanal ALT1 auf das Doppelte und der Kanal ALT2 auf das Dreifache des Kanalabstandes des Nachbarkanals gesetzt. Damit muss bei gleichen Kanalabständen nur ein Wert eingegeben werden. Analog wird mit den Alt2-Kanälen bei der Eingabe der Bandbreite des Alt1-Kanals verfahren.

Hinweis: Die Kanalabstände können unabhängig voneinander eingestellt werden, indem man die Tabelle von oben nach unten überschreibt.

IEC-Bus-Befehl:	:SENS:POW:ACH:SPAC:ACH 1	L.6MHz
	:SENS:POW:ACH:SPAC:ALT1	3.2MHz
	:SENS:POW:ACH:SPAC:ALT2	4.8MHz

Der Softkey ACLR ABS/REL (Channel Power Absolute/Relative) schaltet zwischen absoluter und relativer Messung der Leistung im Kanal um.

- ACLR ABS Der Absolutwert der Leistung im Übertragungskanal und in den Nachbarkanälen wird in der Einheit der Y-Achse angezeigt, z.B. in dBm, dBμV.
- ACLR REL Bei der Nachbarkanalleistungsmessung (NO. OF ADJ CHAN > 0) wird der Pegel der Nachbarkanäle relativ zum Pegel des Übertragungskanals in dBc angezeigt.

Bei linearer Skalierung der Y-Achse wird die relative Leistung (CP/CP_{ref}) des neuen Kanals zum Referenzkanal angezeigt. Bei dB-Skalierung wird das logarithmische Verhältnis 10*lg (CP/CP_{ref}) angezeigt. Damit kann die relative Kanalleistungsmessung auch für universelle Nachbarkanalleistungsmessungen genutzt werden. Jeder Kanal wird dabei einzeln gemessen.

IEC-Bus-Befehl: :SENS:POW:ACH:MODE ABS

Der Softkey CHAN PWR / HZ schaltet zwischen der Messung der Gesamtleistung im Kanal und der Messung der Leistung im Kanal bezogen auf 1 Hz Bandbreite um.

Der Umrechnungsfaktor ist $10 \cdot \lg \frac{1}{Channel \cdot Bandwidth}$.

IEC-Bus-Befehl: :CALC:MARK:FUNC:POW:RES:PHZ ON | OFF
Überprüfung der Signalleistung – SPECTRUM EM MASK

Taste MEAS oder Hotkey MEAS

Der Softkey *LIMIT LINE AUTO* wählt die zu überprüfende Grenzwertlinie automatisch nach Bestimmung der Leistung im Nutzkanal aus. Wird die Messung im *CONTINUOUS SWEEP* betrieben und ändert sich die Kanalleistung von Sweep zu Sweep, kann das in einer fortlaufenden Neuzeichnung der Grenzwertlinie resultieren.

Der Softkey ist beim Betreten der Spectrum-Emission-Mask-Messung im Standard 3GPP aktiviert.

IEC-Bus-Befehl: :CALC:LIM:ESP:MODE AUTO

Hinweis: Bei Auswahl des Standards TSM (siehe Softkey STANDARD im SETTINGS Menü) ist dieser Softkey nicht verfügbar. Die Grenzwertlinien müssen manuell ausgewählt werden.

Der Softkey *LIMIT LINE MANUAL* gibt dem Benutzer die Möglichkeit, die Grenzwertlinie von Hand auszuwählen. Wird dieser Softkey angewählt, wird die Kanalleistungsmessung nicht für die Auswahl der Grenzwertlinie, sondern nur für die Bestimmung deren relativer Anteile genutzt. Die Leistung bei den verschiedenen Frequenzoffsets wird gegen die vom Benutzer angegebene Grenzwertlinie verglichen.

Der Softkey öffnet eine Tabelle mit allen auf dem Gerät vordefinierten Grenzwertlinien:

Standard: 3GPP	Standard: TSM
limit line name	limit line name
P >= 34 dBm	P >= 43 dBm
26 dBm <= P < 34 dBm	39 <= P < 43 dBm
P < 26 dBm	31 <= P < 39 dBm
	P < 31 dBm

Der Name der Grenzwertlinie gibt den Bereich für die erwartete Leistung an, für den die Grenzwertlinie definiert wurde.

IEC-Bus-Befehl:

:CALC:LIM:ESP:MODE MANual :CALC:LIM:ESP:VALue 26 'wählt Linie 26 dBm <= P < 34 dBm

Die Definition der Namen der Grenzwertlinien ist beim Softkey *LIMIT LINE USER* beschrieben. Die Grenzwerte der Spectrum Emission Mask unterscheiden sich zwischen dem 3GPP- und dem TSM-Standard (siehe Softkey *STANDARD* im *SETTINGS* Menü).

3GPP Norm: Spectrum Emission Mask

Tabelle 5-2 Maximale Ausg	gangsleistung P < 26 dBm
---------------------------	--------------------------

Offset Frequenz	Grenzwert	Typ/Name TDSBCA.LIM	RBW
0.815 MHz – 1.015 MHz	-28 dBm	Absolut	30 kHz
1.015 MHz – 1.815 MHz	$-28dBm - 10 \cdot \left(\frac{f - f - c}{MHz} - 1,015\right) dB$	Absolut	30 kHz
1.815 MHz – 2.3 MHz	-36 dBm	Absolut	30 kHz
2.3 MHz - Max	-21 dBm	Absolut	1 MHz

Tabelle 5-3 Maximale Ausgangsleistung 26 dBm <= P < 34 dBm

Offset Frequenz	Grenzwert	Typ/Name TDSBBR.LIM	RBW
0.815 MHz – 1.015 MHz	P-54 dB	Relativ	30 kHz
1.015 MHz – 1.815 MHz	$P - 54dB - 10 \cdot \left(\frac{f - f c}{MHz} - 1,015\right) dB$	Relativ	30 kHz
1.815 MHz – 2.3 MHz	P-62 dB	Relativ	30 kHz
2.3 MHz - Max	P - 47 dB	Relativ	1 MHz

Tabelle 5-4 Ausgangsleistung P >= 34 dBm

Offset Frequenz	Grenzwert	Typ/Name TDSBAA.LIM	RBW
0.815 MHz – 1.015 MHz	-20 dBm	Absolut	30 kHz
1.015 MHz – 1.815 MHz	$-20dBm - 10 \cdot \left(\frac{f - f _ c}{MHz} - 1,015\right) dB$	Absolut	30 kHz
1.815 MHz – 2.3 MHz	-28 dBm	Absolut	30 kHz
2.3 MHz - Max	-13 dBm	Absolut	1 MHz

Hierbei ist eine RBW Umschaltung nötig. Für die 1 MHz Segmente wird das 1 MHz Kanalfilter verwendet.

TSM Norm: Spectrum Emission Mask

Offset Frequenz	Grenzwert	Typ/Name TDSBTDA.LIM	RBW
0.815 MHz – 1.015 MHz	-22 dBm	Absolut	30 kHz
1.015 MHz – 1.815 MHz	-22 - 15 (f_offset – 1.015) dBm	Absolut	30 kHz
1.815 MHz – 2.415 MHz	-36 dBm	Absolut	30 kHz
2.415 MHz – 2.9 MHz	-40 dBm	Absolut	30 kHz
2.9 MHz - Max	-25 dBm	Absolut	1 MHz

Tabelle 5-5 Maximale Ausgangsleistung P < 31 dBm

Tabelle 5-6 Maximale Ausgangsleistung 31 dBm <= P < 39 dBm

Offset Frequenz	Grenzwert	Typ/Name TDSBTCR.LIM	RBW
0.815 MHz – 1.015 MHz	P - 53 dBm	Relativ	30 kHz
1.015 MHz – 1.815 MHz	P - 53 - 15·(f_offset – 1.015) dBm	Relativ	30 kHz
1.815 MHz – 2.415 MHz	P - 67 dBm	Relativ	30 kHz
2.415 MHz – 2.9 MHz	P - 71 dBm	Relativ	30 kHz
2.9 MHz - Max	P - 56 dBm	Relativ	1 MHz

Tabelle 5-7 Maximale Ausgangsleistung 39 dBm <= P < 43 dBm

Offset Frequenz	Grenzwert	Typ/Name TDSBTBA.LIM TDSBTBR.LIM	RBW
0.815 MHz – 1.015 MHz	-14 dBm	Absolut	30 kHz
1.015 MHz – 1.815 MHz	-14 - 15 (f_offset – 1.015) dBm	Absolut	30 kHz
1.815 MHz – 2.415 MHz	-28 dBm	Absolut	30 kHz
2.415 MHz – 2.9 MHz	P-71 dBm	Relativ	30 kHz
2.9 MHz - Max	P - 56 dBm	Relativ	1 MHz

Tabelle 5-8 Maximale Ausgangsleistung P >= 43 dBm

Offset Frequenz	Grenzwert	Typ/Name TDSBTAA.LIM	RBW
0.815 MHz – 1.015 MHz	-14 dBm	Absolut	30 kHz
1.015 MHz – 1.815 MHz	-14 - 15 (f_offset – 1.015) dBm	Absolut	30 kHz
1.815 MHz – 2.3 MHz	-28 dBm	Absolut	30 kHz
2.3 MHz - Max	-13 dBm	Absolu	1 MHz

Hierbei ist eine RBW Umschaltung nötig. Für die 1 MHz Segmente wird das 1 MHz Kanalfilter verwendet.

Der Softkey *LIMIT LINE USER* aktiviert die Eingabe benutzerdefinierter Grenzwertlinien. Der Softkey öffnet die Menüs des Limit-Line-Editors, die aus dem Grundgerät bekannt sind. Folgende Einstellungen der Grenzwertlinien sind für Basisstationstests sinnvoll:

Trace 1, Domain Frequency , X-Scaling relative, Y-Scaling absolute, Spacing linear, Unit dBm.

Im Unterschied zu den bei Auslieferung des Analysators auf dem Gerät vordefinierten Grenzwertlinien, die den Standard-Vorgaben entsprechen, kann die vom Benutzer spezifizierte Grenzwertlinie für den gesamten Frequenzbereich (±4.0 MHz vom Träger) nur entweder relativ (bezogen auf den Referenzpegel) oder absolut angegeben werden.

Die ausgelieferten Grenzwertlinien des AUTO oder MANUAL Modes können auch ausgewählt werden. Die Namen sind in den vorangestellten Tabellen neben dem Typ mit angegeben und sind wie folgt definiert:

Standard: 3GPP:

- 1) Standard in 3 Zeichen
- 2) Link Direction B für Basisstation
- 3) Leistungsklasse A, B, C, wobei A die höchste Leistungsklasse ist.
- 4) Typunterscheidung: A für absolut und R für relativ.

Beispiel für TD-SCDMA bei P < 26 dBm:

Standard: TSM:

- 1) Standard in 3 Zeichen
- 2) Link Direction B für Basisstation
- 3) Kennzeichnung T für TSM-Standard
- 4) Leistungsklasse A, B, C, D wobei A die höchste Leistungsklasse ist.
- 5) Typunterscheidung: A für absolut und R für relativ.

Beispiel für TD-SCDMA bei 31 <= P < 39 dBm:

Die Limitline-Namen sind in der Tabellen neben Typ mit angegeben.

IEC-Bus-Befehl: siehe Tabelle der Softkeys mit Zuordnung der IEC-Bus-Befehle

Der Softkey *RESTORE STD LINES* überführt die im Standard definierten Limit-Lines wieder in den Zustand, in dem sie bei Auslieferung des Gerätes waren. Dadurch kann eine versehentliche Überschreibung der Standard-Lines rückgängig gemacht werden.

IEC-Bus-Befehl: :CALC:LIM:ESP:RESTore

ADAPT TO SIGNAL	AUTO EL&TIME Swe	Softkey ADAPT Referenzpegels ep Mode.	TO SIGNAL öff des Analysators	fnet ein Untermer sowie zur Konfig	nü zur Anpassung uration des Gated
STA	RT SLOT Der den OP SLOT Sub	Softkey AUTO Referenz-Level frame-Start her.	LEVEL & TIME . Sie stellt zuden	startet die Auto-F 1 den Bezug zwis	Range-Routine für schen Trigger und
	Der Gate der Gate	Softkey START ed Sweep Mode Gated Mode O ed Mode Off.	SLOT erlaubt d e. Nur zwischen S n. Für die restlict	ie Eingabe des S START SLOT und hen Slots eines S	Start-Slots für den d STOP SLOT ist Subframes ist der
	Der Gate der Gate	Softkey STOP ed Sweep Mode Gated Mode O ed Mode Off.	SLOT erlaubt di e. Nur zwischen S n. Für die restlict	e Eingabe des S START SLOT und hen Slots eines S	Stop-Slots für den d STOP SLOT ist Subframes ist der
	IEC	-Bus-Befehle:	:[SENSe:]POWe :[SENSe:]POWe :[SENSe:]POWe	r:ACHannel:AU r:ACHannel:SL(r:ACHannel:SL(IO:LTIMe DT:START 17 DT:STOP 17

Messung der vom Signal belegten Bandbreite - OCCUPIED BANDWIDTH

Taste MEAS oder Hotkey MEAS

Bild 5-4 Messung der belegten Bandbreite

Der Softkey aktiviert die Betriebsart SPECTRUM mit definierten Einstellungen:

Folgende benutzerspezifische	Einstellungen werden nicht geändert, so dass die
Anpassung an das Messobjekt er	rhalten bleibt:
Reference Level + Rev	/ Level Offset
Center Frequency + Fr	equency Offset
Input Attenuation + Mix	ker Level
OCCUPIED BANDWIDTH	ON
FREQUENCY SPAN	4.8 MHz
RBW	30 kHz
VBW	300 kHz
DETECTOR	RMS
TRIGGER	EXTERN

IEC-Bus-Befehl: :CONFigure:CDPower:MEASurement OBANdwidth

Ergebnisabfrage: :CALCulate:MARKer:FUNCtion:POWer:RESult? OBANdwidth

Konfiguration der TD-SCDMA-Messungen

Der Softkey % POWER BANDWIDTH öffnet ein Feld zur Eingabe des prozentualen Anteils der Leistung bezogen auf die Gesamtleistung im dargestellten Frequenzbereich, durch welche die belegte Bandbreite definiert ist (prozentualer Anteil an der Gesamtleistung). Der zulässige Wertebereich ist 10 % - 99.9 %.

IEC-Bus-Befehl: :SENS:POW:BWID 99PCT

Der Softkey *ADJUST SETTINGS* passt die Geräteeinstellungen des Analysators an die spezifizierte Kanalbandbreite für die Messung der belegten Bandbreite an.

Alle zur Leistungsmessung innerhalb eines bestimmten Frequenzbereichs (Kanalbandbreite) relevanten Einstellungen des Analysators wie:

- Frequenzdarstellbereich 3 x Kanalbreite
- Auflösebandbreite $RBW \leq 1/40$ der Kanalbandbreite.
- Videobandbreite $VBW \ge 3 \times RBW$.
- Detektor
 RMS

werden optimal eingestellt.

Der Referenzpegel wird durch *ADJUST SETTINGS* nicht beeinflusst. Er ist für optimale Messdynamik so einzustellen, dass sich das Signalmaximum in der Nähe des Referenzpegels befindet.

Die Anpassung erfolgt einmalig, im Bedarfsfall können die Geräteeinstellungen anschließend auch wieder verändert werden.

IEC-Bus-Befehl: :SENS:POW:PRES OBW

Der Softkey ADAPT TO SIGNAL öffnet ein Untermenü zur Anpassung des Referenzpegels des Analysators sowie zur Konfiguration des Gated Sweep Mode.

Der Softkey AUTO LEVEL & TIME startet die Auto-Range-Routine für den Referenz-Level. Sie stellt zudem den Bezug zwischen Trigger und Subframe-Start her.

Der Softkey START SLOT erlaubt die Eingabe des Start-Slots für den Gated Sweep Mode. Nur zwischen START SLOT und STOP SLOT ist der Gated Mode On. Für die restlichen Slots eines Subframes ist der Gated Mode Off.

Der Softkey STOP SLOT erlaubt die Eingabe des Stop-Slots für den Gated Sweep Mode. Nur zwischen START SLOT und STOP SLOT ist der Gated Mode On. Für die restlichen Slots eines Subframes ist der Gated Mode Off.

ADAPT TO

SIGNAL

Signalleistung über der Zeit – POWER VS TIME

Taste *MEAS* oder Hotkey *MEAS*

Bild 5-5 Messung der Signalleistung über der Zeit

Der Softkey aktiviert die Betriebsart SPECTRUM mit definierten Einstellungen:

Folgende benutzerspezifische	Einstellungen werden nicht geändert, so dass die
Anpassung an das Messobjekt e	erhalten bleibt:
Reference Level + Rev	v Level Offset
Center Frequency + Fr	requency Offset
Input Attenuation + Mix	xer Level
SWEEP TIME	2.4 ms
RBW	1.28 MHz RRC
VBW	10 MHz
DETECTOR	RMS
TRIGGER	EXTERN

IEC-Bus-Befehl: :CONFigure:CDPower:MEASurement PVTime

Ergebnisabfrage: :CALCulate<1>:LIMit<1>:FAIL?

Konfiguration der TD-SCDMA-Messungen

IEC-Bus-Befehl: :[SENSe:]POWer:ACHannel:AUTO:LTIMe

Signalstatistik

Taste MEAS oder Hotkey MEAS

Der Softkey *SIGNAL STATISTIC* startet eine Messung der Verteilungsfunktion der Signalamplituden (Complementary Cumulative Distribution Function). Die Messung kann mit Hilfe der Softkeys des Menüs auf Amplitude Power Distribution (APD) umgeschaltet werden.

Für diese Messung wird kontinuierlich ein Signalausschnitt einer einstellbaren Länge im Zero-Span aufgezeichnet und die Verteilung der Signalamplituden ausgewertet. Die Aufnahme-Länge sowie der Darstellbereich der CCDF können mit Hilfe der Softkeys des Menüs eingestellt werden. Die Amplitudenverteilung wird logarithmisch in Prozent der Überschreitung eines bestimmten Pegels aufgetragen, beginnend beim Mittelwert der Signalamplituden.

Zusätzlich wird der Crest-Faktor, also die Differenz zwischen Maximalwert und Mittelwert der Leistung in dB ausgegeben.

Peak 7.51 dBm Crest 8.71 dB

Bild 5-6 CCDF des TD-SCDMA-Signals.

Der Softkey aktiviert die Betriebsart SPECTRUM mit vordefinierten Einstellungen:

Folgende benutzerspezifische Anpassung an das Messobjekt e	Einstellungen rhalten bleibt:	werden	nicht	geändert,	so	dass	die
Reference Level -	Rev Level Of	fset					
Center Frequency	+ Frequency	Offset					
Input Attenuation	+ Mixer Level						
CCDF	ON						
RBW	10 MHz						
DETECTOR	SAMPLE						
TRIGGER	EXTERN						

Ausgehend von dieser Einstellung kann der Analysator in allen Funktionen, die er in der Betriebsart SPECTRUM bietet, bedient werden, d.h. alle Messparameter können an die Erfordernisse der spezifischen Messung angepasst werden.

IEC-Bus-Befehl: :CONFigure:CDPower:MEASurement CCDF
oder
:CALCulate:STATistics:CCDF ON

Ergebnisabfrage: :CALCulate:MARKer:X?

:CALCulate:STATistics:RESults? MEAN | PEAK |CFActor | ALL

- MEAN mittlere (RMS) im Beobachtungszeitraum gemessene Leistung in dBm PEAK im Beobachtungszeitraum gemessene Spitzenleistung in dBm
- CFACtor ermittelter CREST-Faktor (= Verhältnis von Spitzenleistung zu mittlerer Leistung) in dB
- ALL Ergebnisse aller drei genannten Messungen, durch Komma getrennt: <mean pow>, <peak pow>, <crest factor>

Der Softkey *APD ON/OFF* schaltet die Amplituden-Wahrscheinlichkeitsverteilungsfunktion ein.

IEC-Bus-Befehl: :CALC:STAT:APD ON

Der Softkey *CCDF ON/OFF* schaltet die komplementäre Verteilungsfunktion (Complementary Cumulative Distribution Function) ein.

IEC-Bus-Befehl: :CALC:STAT:CCDF ON

Bei aktiver CCDF-Funktion erlaubt der Softkey *PERCENT MARKER* die Positionierung von Marker 1 durch Eingabe einer gesuchten Wahrscheinlichkeit. Damit lässt sich auf einfache Weise die Leistung ermitteln, die mit einer vorgegebenen Wahrscheinlichkeit überschritten wird.

Ist Marker 1 ausgeschaltet, so wird er automatisch eingeschaltet.

IEC-Bus-Befehl: :CALC:MARK:Y:PERC 0...100%

Der Softkey *NO OF SAMPLES* stellt die Anzahl der Leistungsmesswerte ein, die für die Verteilungsmessfunktion zu berücksichtigen sind.

Hinweis: Die Gesamtmesszeit wird sowohl von der gewählten Anzahl der Messungen als auch von der für die Messung gewählten Auflösebandbreite beeinflusst, da sich die Auflösebandbreite direkt auf die Messgeschwindigkeit auswirkt.

IEC-Bus-Befehl: :CALC:STAT:NSAM <value>

FS-K76

Konfiguration der TD-SCDMA-Messungen

Der Softkey *CONT MEAS* startet die Aufnahme neuer Messdatenreihen und die Berechnung der APD- oder CCDF-Kurve, je nach gewählter Messfunktion. Die nächste Messung wird automatisch gestartet sobald die angezeigte Anzahl der Messwerte erreicht wurde ("<u>CONT</u>inuous <u>MEAS</u>urement").

IEC-Bus-Befehl: :INIT:CONT ON; :INIT:IMM

Der Softkey *SINGLE MEAS* startet die Aufnahme einer neuen Messdatenreihe und die Berechnung der APD- oder CCDF-Kurve, je nach gewählter Messfunktion. Die Messung endet nach Erreichen der angezeigten Anzahl von Messwerten.

IEC-Bus-Befehl: :INIT:CONT OFF; :INIT:IMM

П

ADAPT TO

SIGNAL

Code-Domain-Messungen an TD-SCDMA-Signalen

Die Applikations-Firmware R&S FS-K76 stellt einen Code-Domain-Analyzer zur Verfügung. Mit dessen Hilfe können die in der TD-SCDMA-Spezifikation geforderten Messungen bezüglich der Leistung der einzelnen Codes bzw. Code-Kanäle (gebündelte Codes) durchgeführt werden. Zusätzlich werden die Modulationsqualität (EVM und RHO-Faktor), Frequenz- und Chiptaktfehler sowie Peak-Code-Domain-Error ermittelt. Auch Constellation-Auswertungen und Bitstream-Auswertungen stehen zur Verfügung. Bei Verwendung eines externen Triggersignals wird die Trigger-to-Subframe-Zeit ermittelt. Die Anzahl der beobachteten Slots ist über den Softkey *CAPTURE LENGTH* einstellbar.

Grundsätzlich lassen sich für die Auswertungen folgende Ergebnisklassen unterscheiden:

- Ergebnisse, die das Gesamtsignal über die gesamte Beobachtungszeitdauer (alle Slots) berücksichtigen
- Ergebnisse, die das Gesamtsignal über einen Slot berücksichtigen
- Ergebnisse, die einen Kanal über die gesamte Beobachtungszeitdauer (alle Slots) berücksichtigen
- Ergebnisse, die einen Kanal über einen Slot berücksichtigen

Die Auswertungen des Code-Domain-Analyzers werden im Split Screen vorgenommen. Hierbei ist der Bildschirm in 2 Hälften unterteilt.

Im oberen Screen (Screen A) werden Auswertungen angezeigt, die über die Codes variieren. Im unteren Screen (Screen B) werden alle anderen Auswertungen dargestellt.

Auswertung im Screen A	alle Kanäle	ein Kanal	alle Slots	ein Slot
Code-Domain-Power	\checkmark			\checkmark
Code-Domain-Error-Power	~			\checkmark
Kanaltabelle	\checkmark			\checkmark

Tabelle 5-9 Auswertungen im Screen A

Tabelle 5-10 Auswertungen im Screen B

Auswertung im Screen B	alle Kanäle	ein Kanal	alle Slots	ein Slot
Result Summary	~	✓	✓	✓
Power versus Slot		✓	√	
Power versus Symbol		✓		√
Composite EVM (Modulation Accuracy)	✓		√	
Composite Constellation	✓			✓
Peak-Code-Domain-Error	✓		✓	
Symbol Constellation		✓		✓
Symbol EVM		✓		✓
Bitstream		✓		\checkmark

Abhängig von der Symbolrate eines Code-Kanals besitzt dieser einen unterschiedlichen Spreading-Faktor und eine unterschiedliche Anzahl an Symbolen pro Slot. Der Zusammenhang ist in der folgenden Tabelle sichtbar.

Spreading Faktor	Symbole pro Slot	Datenrate [kbps] QPSK	Datenrate [kbps] 8PSK
16	44	17.6	26.4
8	88	35.2	52.8
4	176	70.4	105.6
2	352	140.8	211.2
1	704	281.6	422.4

Tabelle 5-11 Zusammenhang zwischen Spreading-Faktor und Symbolanzahl sowie der Datenrate

Die Datenraten in der Tabelle ergeben sich aus der Bitanzahl pro Slot bezogen auf eine Subframe-Länge von 5 ms. Bei Auswertungen im unteren Screen, die auf der x-Achse Symbole auftragen, variiert die maximale Anzahl der Symbole abhängig von der Symbolrate des selektierten Code-Kanals. Mit Hilfe des Softkey *SELECT CHANNEL* und *SELECT SLOT* lässt sich der Code-Kanal und der Slot

auswählen, zu denen ein Ergebnis dargestellt werden soll. Es ist zum Beispiel der Code-Kanal 1.16 (Code Nummer 1 zum Spreading Faktor 16) und der Slot 2 ausgewählt. Im Screen A ist die Auswertung Code-Domain-Power und im Screen B die Symbol-EVM-Auswertung aktiv. Somit wird im Screen A die Code-Domain-Power Auswertung von Slot 2 dargestellt. Hierbei ist der Code-Kanal 1.16 selektiert in roter Farbe dargestellt. In der unteren Bildschirmhälfte ist die Symbol EVM Auswertung des Code-Kanals 1.16 im Slot 2 mit entsprechend 44 Werten zu sehen.

Der Code-Domain-Analyzer kann in zwei Modi betrieben werden. Im CODE CHAN AUTOSEARCH Modus führt er eine automatische Suche nach aktiven Kanälen im gesamten Code-Raum durch. Im anderen Modus CODE CHAN PREDEFINED wird dem Benutzer die Möglichkeit gegeben, die aktiven Code-Kanäle eines beliebigen Slots über wähl- und editierbare Tabellen selbst zu bestimmen. Die automatische Kanalsuche wird dann im eingestellten Slot durch diese Benutzereingabe ersetzt.

Der Code-Domain-Analyzer erfordert einen aktiven Kanal 1.16 (z.B. P-CCPCH1) und eine gültige Midamble in Slot 0 zur Synchronisation. Die Parameter SCRAMBLING CODE und MA SHIFTS CELL müssen mit dem Sender übereinstimmen.

Darstellung der Auswertungen - RESULTS

Hotkey RESULTS oder Hotkey MEAS und danach Softkey CODE DOM ANALYZER

RESULTS	CODE DOM POWER	CHANNEL TABLE	Der Hotkey RESULT Auswahl der Auswei dabei die wichtigst schnellen Zugriff ang	<i>ΓS</i> öffnet das Untermenü zur rtung. Im Hauptmenü werden en Auswertungen für einen eboten, im Seitenmenü stehen				
	ERROR	CONST	weiterführende Auswertungen zur Verfügung.					
	COMPOSITE	SYMBOL EVM	Folgende Auswertungen stehen zur Auswahl:					
	PK CODE DOM ERR	BITSTREAM	CODE DOM POWER	Code-Domain-Power-Auswer- tung, abhängig vom Softkey CODE PWR ABS/REL in rela- tiver oder absoluter Skalierung				
	POWER VS SLOT	COMPOSITE CONST	CODE DOM ERROR	Code-Domain-Error-Power- Auswertung				
	RESULT SUMMARY	POWER VS SYMBOL	COMPOSITE EVM	Error-Vector-Magnitude - Auswertung für jeden Slot				
	SELECT CHANNEL	SELECT CHANNEL	PEAK CODE DOMAIN	I ERR Maximum der Code-Domain- Error-Power-Auswertung für				
	SELECT SLOT	SELECT SLOT		Leistung des gewählten Kanal:				
	ADJUST REF LVL	ADJUST REF LVL		über alle Slots, abhängig vom Softkey CODE PWR ABS/REL in relativer oder absoluter Skalierung				
	V	N N	RESULT SUMMARY	Tabellarische Ergebnisse				
			CHANNEL TABLE	Kanalbelegungstabelle in Code Order oder Midamble Order				
			SYMBOL CONST	Symbol-Constellation- Auswertung				
			SYMBOL EVM	Error-Vector-Magnitude-Auswer- tung für jedes Symbol eines Slots				
			BITSTREAM	Darstellung der entschiedenen Bits				
			COMPOSITE CONST	Composite Constellation-Aus- wertung				
			POWER VS SYMBOL	Leistung des gewählten Kanals und des gewählten Slots über alle Symbole				
			Über die Eingabe einer CHANNEL) kann ein POWER VS SLOT, S BITSTREAMund POWE	Kanalnummer (Softkey SELECT Kanal für die Auswertungen YMBOL CONST, SYMBOL EVM, ER VS SYMBOL selektiert werden.				

Über den Softkey SELECT SLOT kann ein Slot für die Auswertungen CODE DOM POWER, CODE ERROR, CHANNEL TABLE, SYMB CONST, SYMBOL EVM, BITSTREAM und POWER VS SYMBOL selektiert werden.

Mit Hilfe von *ADJUST REF LVL* kann eine optimale Anpassung des Referenzpegels des Gerätes an den Signalpegel erreicht werden.

Folgende benutzerspezifische Einstellungen werden nicht geändert,							
so dass die Anpassung an das Messobjekt erhalten bleibt:							
Reference Level + Rev Level Offset							
Center Frequency + Frequency Offset							
Input Attenuation + Mixer Level							
Folgende benutzerspezifische Einstellungen werden wie folgt							
überführt:							
Externe Triggerguelle bleibt erhalten, alle anderen							
Triggerguellen resultieren in den Free Run Modus.							
Zusätzliche Triggereinstellungen bleiben erhalten.							

Oberhalb des Diagramms werden die wichtigsten Messeinstellungen, die den Darstellungen zugrunde liegen, zusammengefasst aufgeführt:

BS,	TDS	:CODE	POWER				DR	17.6	kbps
							Chan		1.16
dB	TOT			CF	2.01000	GHz	Slot		0

Bild 5-7 Funktionsfelder der Diagramme

Dabei bed	euten				
1. Spalte:	Mobilfunksystem (Basisstation TD-SCDMA)		BS,TD	S	
	Name der gewählten Auswertung: (Leerzeile)	z.B.	CODE 1	POWER	
	Einheit der y-Achse	z.B. Leistun	db to: g zur Ge	r für relati esamtleist	ive tung
2. Spalte:	(Leerzeile) (Leerzeile)				
	Mittenfrequenz des Signals:	z.B.	CF 2.	01000 GI	Hz
3. Spalte:	Datenrate des ausgewählten Kanals :	z.B.	DR :	17.6 kb	ps
	Code-Nummer und Spreading-Faktor des gewählten Kanals	:z.B.	Chan	1.1	16
	Nummer des ausgewerteten Slots:		Slot		0

Der Softkey CODE DOM POWER wählt die Auswertung der Code-Domain-Power (CDP) aus.

Bei der Code-Domain-Power-Auswertung wird das Gesamtsignal über genau einen Slot berücksichtigt. Die Leistungen der einzelnen Codes werden bestimmt und in einem Diagramm aufgetragen. Bei diesem Diagramm ist die x-Achse die Code-Nummer und die y-Achse eine logarithmische Pegelachse. Die Anzahl der Codes entspricht dem maximalen Spreading-Faktor 16. Der auszuwertende Slot ist über den Softkey *SELECT SLOT* einstellbar.

Über den Softkey *CODE PWR ABS/REL* kann zwischen absoluter und relativer Leistungsangabe umgeschaltet werden. Bei der relativen Leistungsangabe wird die Codeleistung auf die mittlere Gesamtleistung der Datenfelder des ausgewählten Slots bezogen. Die Einheit der y-Achse ist dementsprechend dBm bei absoluter und dB TOT bei relativer Auswertung.

Die Leistungen der aktiven und der nicht belegten Kanäle werden farblich unterschiedlich dargestellt. Folgende Farbgebungen sind definiert:

- gelb aktiver Kanal
- cyan unbelegt
- rot selektierter Kanal

Als aktiv wird ein Kanal im Modus *CODE CHAN AUTOSEARCH* (automatischer Kanal-Such-Modus) dann bezeichnet, wenn die vom Benutzer eingegebene relative Mindestleistung (siehe Softkey INACT CHAN THRESHOLD) überschritten wird und ein ausreichendes Signal- zu Rauschverhältnis vorliegt. Im Modus *CODE CHAN PREDEFINED* wird jeder in der vom Benutzer definierten Kanaltabelle enthaltene Code-Kanal als aktiv gekennzeichnet.

Die Ergebnisse der Code-Domain-Power Auswertung werden nach aufsteigenden Codenummern sortiert und dargestellt. Alle Codes werden für die Sortierung auf den Spreading Faktor 16 projiziert. So liegt z.B. der Kanal 2.8 zwischen den Kanälen 3.16 und 6.16.

Über die Eingabe einer Kanalnummer (siehe Softkey SELECT CHANNEL) kann ein Kanal für weiterführende Darstellungen markiert werden. Die Codes dieses Kanals werden in roter Farbe dargestellt.

Die Anwahl weiterführender Auswertungen (z.B. *SYMBOL CONSTELLATION*) für nicht belegte Codes ist möglich, aber nicht sinnvoll, da die Ergebnisse keine Gültigkeit besitzen.

IEC-Bus-Befehl: :CALCulate<1>:FEED "XPOW:CDP:RAT" (relative) :CALCulate<1>:FEED "XPOW:CDP" (absolute)

Der Softkey *CODE DOM ERROR* selektiert die Auswertung der Code-Domain-Error-Power (CDEP).

Die Code-Domain-Error-Power-Messung gibt die Differenz der Leistungen zwischen gemessenen und ideal erzeugtem Referenzsignal für jeden Code in dB aus. Da es sich um eine Fehlerleistung handelt, können mit dieser Auswertung auf einen Blick aktive und inaktive Kanäle gemeinsam beurteilt werden. Die Analyse wird ausschließlich im Spreading-Faktor 16 durchgeführt.

Bei der Code-Domain-Error-Power-Auswertung wird das Gesamtsignal über genau einen Slot berücksichtigt und die Fehlerleistungen der einzelnen Codes bestimmt und in einem Diagramm aufgetragen. Bei diesem Diagramm ist die x-Achse die Code Nummer und die y-Achse ist eine logarithmische Pegelachse in der Einheit dB. Die Anzahl der Codes auf der x-Achse entspricht dem maximalen Spreading-Faktor 16. Der auszuwertende Slot ist über den Softkey *SELECT SLOT* einstellbar.

Die Leistungen der aktiven und der nicht belegten Kanäle werden farblich unterschiedlich dargestellt. Folgende Farbgebungen sind definiert:

- gelb aktiver Kanal
- cyan unbelegt
- rot selektierter Kanal

Als aktiv wird ein Kanal im Modus *CODE CHAN AUTOSEARCH* (automatischer Kanal-Such-Modus) dann bezeichnet, wenn die vom Benutzer eingegebene relative Mindestleistung (siehe Softkey *INACT CHAN THRESHOLD*) überschritten wird und ein ausreichendes Signal- zu Rauschverhältnis vorliegt. Im Modus *CODE CHAN PREDEFINED* wird jeder in der vom Benutzer definierten Kanaltabelle enthaltene Code-Kanal als aktiv gekennzeichnet.

Die Ergebnisse der Code-Domain-Error-Power Auswertung werden nach aufsteigenden Codenummern im Spreading-Faktor 16 sortiert und dargestellt.

Über die Eingabe einer Kanalnummer (siehe Softkey SELECT CHANNEL) kann ein Kanal für weiterführende Darstellungen markiert werden. Die Codes dieses Kanals werden in roter Farbe dargestellt.

IEC-Bus-Befehl: :CALCulate1:FEED "XPOW:CDEP"

Der Softkey *COMPOSITE EVM* wählt die Auswertung der Error-Vector-Magnitude (EVM) über das Gesamtsignal (Modulation Accuracy).

Bei der Composite-EVM-Messung wird die Quadratwurzel aus dem Fehlerquadrat zwischen den Real- und Imaginärteilen des Messsignals und eines ideal erzeugten Referenzsignals ermittelt und auf die Quadratwurzel der mittleren Leistung des Referenzsignals normiert.

Das Messergebnis besteht aus einem Composite-EVM-Messwert pro Slot. Die

Anzahl der Slots ist über den Softkey CAPTURE LENGTH einstellbar. Demnach berücksichtigt die Composite-EVM-Auswertung das Gesamtsignal über die gesamte Beobachtungszeitdauer. Für inaktive Slots wird kein EVM-Wert ausgegeben, da keine Referenzleistung vorhanden ist.

Für die Erzeugung des idealen Referenzsignals werden nur die als aktiv erkannten Kanäle genutzt. Im Falle eines Kanals, der z.B. auf Grund geringer Leistung nicht als aktiv erkannt wird, ist die Differenz zwischen Mess- und Referenzsignal und der Composite-EVM daher sehr hoch (siehe Abbildung).

Bild 5-11 Composite-EVM-Diagramm bei nicht erkannten Kanälen

Analog zur Auswahl eines Code-Kanals im CDP- oder CDEP-Diagramm besteht im Composite-EVM-Diagramm die Möglichkeit, einen Slot zu markieren. Die Markierung erfolgt durch Eingabe der Slot-Nummer (siehe Softkey *SELECT SLOT*). Der gewählte Slot wird als roter Balken dargestellt.

IEC-Bus-Befehl: :CALCulate<2>:FEED "XTIM:CDP:MACCuracy"

Der Softkey *PK CODE DOM ERR* selektiert die Auswertung Peak-Code-Domain-Error.

Die Peak-Code-Domain-Error-Messung gibt für jeden Slot das Maximum der Code-Domain-Error-Power-Messung aus. Diese ermittelt die Differenz der Leistungen zwischen gemessenen und ideal erzeugtem Referenzsignal für jeden Code in dB. Die Analyse wird ausschließlich im Spreading-Faktor 16 durchgeführt.

Das Messergebnis besteht aus einem numerischen Wert pro Slot für den Peak-Code-Domain-Error. Die Anzahl der Slots ist über den Softkey *CAPTURE LENGTH* einstellbar. Demnach berücksichtigt die Peak-Code-Domain-Error-Auswertung das Gesamtsignal über die gesamte Beobachtungszeitdauer. Für inaktive Slots wird kein Peak-Code-Domain-Error-Wert ausgegeben, da keine Referenzleistung vorhanden ist.

Für die Erzeugung des idealen Referenzsignals für Peak-Code-Domain-Error werden nur die als aktiv erkannten Kanäle genutzt. Wenn ein belegter Code auf Grund geringer Leistung nicht als aktiv erkannt wird, ist die Differenz zwischen Mess- und Referenzsignal sehr hoch. Die R&S FS-K76 zeigt daher einen zu hohen Peak-Code-Domain-Error an (siehe Abbildung).

Bild 5-12 Peak-Code-Domain-Error-Diagramm

Bild 5-13 Peak-Code-Domain-Error-Diagramm bei nicht erkannten Kanälen.

Analog zur Auswahl eines Code-Kanals im CDP- oder CDEP-Diagramm besteht im Peak-Code-Domain-Error-Diagramm die Möglichkeit, einen Slot zu markieren. Die Markierung erfolgt durch Eingabe der Slot-Nummer (siehe Softkey *SELECT SLOT*). Der gewählte Slot wird als roter Balken dargestellt.

IEC-Bus-Befehl: :CALCulate<2>:FEED "XTIM:CDP:ERR:PCDomain"

Der Softkey POWER VS SLOT aktiviert die Power-versus-Slotauswertung.

Dabei erfolgt die Darstellung der Leistung des gewählten Kanals für jeden Slot gemittelt. Über den Softkey *CODE PWR ABS/REL* kann zwischen absoluter und relativer Leistungsangabe umgeschaltet werden. Bei der relativen Leistungsangabe wird die Kanalleistung in jedem Slot auf die mittlere Gesamtleistung der Datenfelder des Slots bezogen. Die Einheit der y-Achse ist dementsprechend dBm bei absoluter und dB TOT bei relativer Auswertung.

Hinweis: Bei relativer Leistungsangabe wird in inaktiven Slots die Rauschleistung im gewählten Kanal auf die Gesamtrauschleistung normiert. Dadurch ergeben sich auch in inaktiven Slots relative Leistungen von typischerweise -12 dB.

Es wird farblich dargestellt, ob der ausgewählte Kanal in dem jeweiligen Slot aktiv, inaktiv oder Aliasleistung eines anderen Kanals ist. Aliasleistung wird angezeigt, wenn an der Stelle des ausgewählten Kanals ein Kanal mit unterschiedlichem Spreading-Faktor liegt. Folgende Farbgebungen sind definiert:

- gelb aktiver Kanal
- cyan unbelegt
- grün Aliasleistung
- rot selektierter Kanal

Das Messergebnis besteht aus einem numerischen Wert pro Slot für den Leistungswert. Die Anzahl der Slots ist über den Softkey *CAPTURE LENGTH* einstellbar. Demnach berücksichtigt die Power-versus-Slotauswertung Auswertung einen Code-Kanal über die gesamte Beobachtungszeitdauer.

Bild 5-14 Power-versus-Slotdiagramm mit absoluter Leistungsangabe

Analog zur Auswahl eines Code-Kanals im CDP- oder CDEP-Diagramm besteht im Power-versus-Slotdiagramm die Möglichkeit, einen Slot zu markieren. Die Markierung erfolgt durch Eingabe der Slot-Nummer (siehe Softkey *SELECT SLOT*). Der gewählte Slot wird als roter Balken dargestellt.

:CALCulate<2>:FEED	"XTIM:CDP:PVSLot:RAT"
(relative)	
:CALCulate<2>:FEED	"XTIM:CDP:PVSLot"
(absolute)	
	:CALCulate<2>:FEED (relative) :CALCulate<2>:FEED (absolute)

Der Softkey *RESULT SUMMARY* wählt die numerische Auswertung aller Messergebnisse aus. Die Auswertung ist wie folgt untergliedert:

	RESULT SUMMARY TABLE			6 ksps		
	CF 2 GHz		Chan Slot	4		
	GLOBAL RESULTS					
	Chip Rate Error	1.54	ppm	Trg to Frame	82	ns
Ref	SLOT RESULTS					
9.00	P Data	-1.17	dBm	Carr Freq Err	-2.72	kHz
dBm	P D1	-1.17	dBm	IQ Imbal/Offs	0.03/0.22	%
Att	P D2	-1.17	dBm	RHO	0.9999	
35 dB	P Midamble	-1.17	dBm	Composite EVM	1.21	%
	Active Channels	8		Pk CDE(SF 16)	-49.30	dB
_	CHANNEL RESULTS					
	Channel.SF	1.16		Data Rate	17.6	kbps
CLRWR	ChannelPwr Rel	-9.04	dB	ChannelPwr Abs	-10.21	dBm
	Symbol EVM	0.72	%rms	Symbol EVM	1.27	%Pk

Bild 5-15 Result Summary

Im ersten Teil werden Messergebnisse ausgegeben, die das Gesamtsignal betreffen:

Chip Rate Error: Gibt den Fehler der Chiprate (1.28 Mcps) in ppm an. Ein hoher Chipraten-Fehler führt zu Symbolfehlern und damit unter Umständen dazu, dass die CDP-Messung keine Synchronisation durchführen kann.

Trg to Frame: Zeitversatz vom Beginn des aufgenommenen Signalausschnitts bis zum Start des ersten Slots. Im Falle einer getriggerten Datenaufnahme entspricht dies dem Zeitversatz Trigger zu Subframestart (+ Triggeroffset). Wenn der Analysator nicht auf das TD-SCDMA-Signal synchronisieren konnte, hat der Wert von Trg to Frame keine Aussagekraft. Ist der Trigger FREE RUN ausgewählt, werden Striche (-.--) angezeigt.

Im zweiten Teil werden Messergebnisse angegeben, die alle Kanäle für den über den Softkey *SELECT SLOT* ausgewählten Slot betreffen:

- P Data: Gesamtleistung der Datenfelder für den selektierten Slot.
- PD1/PD2: Einzelleistungen der Datenfelder 1 und 2 für den selektierten Slot.
- P Midamble: Leistung des Midamble-Feldes für den selektierten Slot.
- Active Channels: Anzahl der aktiven Kanäle für den selektierten Slot.
- Carr Freq Err: Der Frequenzfehler für den ausgewählten Slot. Er repräsentiert die Summe aus dem Frequenzfehler des Analysators und dem des Messobjekts.
- IQ Imbal/Offs: IQ-Imbalance und IQ-DC-Offset.
- RHO: Qualitätsparameter RHO für den selektierten Slot.
- Composite EVM: Error-Vector-Magnitude über das Gesamtsignal im gewählten Slot.
- Pk CDE (SF 16) : Der Peak-Code-Domain-Error im Spreading-Faktor 16 für den selektierten Slot.

Im dritten Teil der RESULT SUMMARY sind die Ergebnisse von Messungen am ausgewählten Kanal im ausgewählten Slot dargestellt.

- Data Rate: Datenrate, abhängig vom Spreading-Faktor und der Modulationsart des Kanals.
- Channel.SF: Nummer des Kanals und sein dazugehöriger Spreading-Faktor.

Channel Power Rel:

Relative Kanalleistung bezogen auf die mittlere Leistung der Datenfelder des gewählten Slots.

Channel Power Abs:

Absolute Kanalleistung.

Symbol EVM: Spitzen- bzw. Mittelwert der EVM für den gewählten Kanal im gewählten Slot.

IEC-Bus-Befehl:

:CALCulate<2>:FEED "XTIM:CDP:ERR:SUMM"

:CALCulate<1|2>:MARKer<1>:FUNCtion:CDPower[:BTS]:RESult? SLOT | PDATa | PD1 | PD2 | PMIDamble | RHO| MACCuracy | PCDerror | FERRor | CERRor | TFRame | IQIMBalance | IQOFfset | ACTive | SRATe | CHANnel | SFACtor | CDPRelative | CDPabsolute | EVMRms | EVMPeak

FS-K76

CH TABLE CODE CH TABLE MIDAMBLE	Der Softkey <i>CHANNEL TABLE</i> selektiert die Auswertung Kanalbele- gungstabelle. Die Kanalbelegungstabelle kann maximal 32 Einträge enthalten, entsprechend 16 Midambles und 16 Codekanälen. Die Auswertung Kanalbelegungstabelle berücksichtigt das Gesamtsignal über genau einen Slot. Der auszuwertende Slot ist über den Softkey <i>SELECT SLOT</i> einstellbar. Als aktiv wird ein Datenkanal im Modus <i>CODE CHAN AUTOSEARCH</i> dann bezeichnet, wenn er die Mindestleistung (siehe Softkey <i>INACT</i> <i>CHAN THRESHOLD</i>) und ein ausreichendes Signal zu Rauschverhältnis aufweist. Im Modus <i>CODE CHAN PREDEFINED</i> werden alle in der vordefinierten Kanaltabelle enthaltenen aktiven Code-Kanäle im gewählten Slot als aktiv gekennzeichnet.
PAGE UP	
PAGE DOWN	

Über die Softkeys *CH TABLE CODE* und *CH TABLE MIDAMBLE* kann die Sortierung der Kanaltabelle ausgewählt werden.

In der Code Order werden zunächst die Midambles aufgeführt. Die Midambles sind aufsteigend nach ihrem Midamble-Shift sortiert. Ihnen folgen die aktiven Kanäle. Die aktiven Kanäle werden auf den Spreading-Faktor 16 projiziert und nach aufsteigenden Codenummern sortiert.

Zum Schluss werden die inaktiven Kanäle hinzugefügt.

R	BS, TDS: CH	ANNEL TAI	з							
$\sqrt{3}$					Chan	1.4				
•			CF 15.36 MH	Iz	Slot	5				
	Туре	Chan.SI	Data Rate	Mod	Pwr.Abs	Pwr.Rel	MA.shift	∆MiD1	∆MiD2	
			kbps	Туре	dBm	dB		dB	dB	
Ref	Midamble				-9.51	-4.78	1	-0.03	-0.04	A
4.00	Midamble				-15.53	-10.80	7	0.05	0.02	
dBm	Midamble				-9.50	-4.77	9	0.04	0.05	
Att	Midamble				-15.52	-10.78	14	-0.02	-0.01	TRG
35 dB	Midamble				-15.54	-10.80	15	-0.01	-0.02	
	Midamble				-15.53	-10.79	16	-0.05	-0.04	
	DPCH	1.4	70.40	QPSK	-9.47	-4.74	1			
L CL.RWR	DPCH	4.8	35.20	QPSK	-15.57	-10.84	7			
CLIMIN	DPCH	3.4	70.40	QPSK	-9.55	-4.82	9			
	DPCH	14.16	17.60	QPSK	-15.50	-10.76	14			
										PRN

Bild 5-16 Kanaltabelle in Code Order

In der Midamble Order werden nach jeder Midamble die zugehörigen Codes aufgeführt. Es wird automatisch zwischen Common- und Default Midamble Allocation unterschieden. Die Zuordnung von Codes zu Midambles für diese beiden Fälle kann der TD-SCDMA-Spezifikation entnommen werden. Wenn weder eine Common- noch eine Default Midamble Allocation erkannt wird, erfolgt die Sortierung in der Code Order.

R	BS, TDS: CH	ANNEL TAN	3											
X.					Chan	1.4								
•	CF 15.36 MHz Slot 5													
	Туре	Chan.SF	Data Rate	Mod	Pwr.Abs	Pwr.Rel	MA.shift	∆MiD1	Δ MiD2					
			kbps	Туре	dBm	dB		dB	dB					
Ref	Midamble				-9.51	-4.78	1	-0.04	-0.04	A				
4.00	DPCH	1.4	70.40	QPSK	-9.47	-4.74	1							
dBm	Midamble				-15.52	-10.80	7	0.05	0.03	mpg				
Att	DPCH	4.8	35.20	QPSK	-15.56	-10.83	7			IRG				
35 QB	Midamble				-9.50	-4.77	9	0.04	0.05					
	DPCH	3.4	70.40	QPSK	-9.54	-4.81	9							
	Midamble				-15.51	-10.78	14	-0.03	-0.01					
	DPCH	14.16	17.60	QPSK	-15.49	-10.77	14							
	Midamble				-15.53	-10.80	15	-0.01	-0.02					
	DPCH	15.16	17.60	QPSK	-15.51	-10.79	15]				
										PRN				

Für die Kanäle werden folgende Parameter durch die CDP-Messung ermittelt:

Type:	Typ des Kanals (Midamble, DPCH oder Sonderkanal)
Type.	Typ des Rahais (Midambie, Di Ori oder Conderkandi)

- Chan.SF: Kanalnummer (1 bis Spreading-Faktor) inkl. des Spreading-Faktors des Kanals in der Notation Chan.SF
- Data Rate: Datenrate, mit der der Kanal übertragen wird
- Mod Type: Modulationsverfahren des Kanals (QPSK oder 8PSK)
- Pwr Abs / Pwr Rel:

Angabe der absoluten und relativen (bezogen auf die Gesamtleistung der Datenbereiche) Leistung des Kanals

Ma shift: Der Midamble-Shift. Bei Codekanälen der Midamble-Shift der zugehörigen Midamble, wenn eine Common oder Default Midamble Allocation erkannt wird.

Gemäß der TD-SCDMA-Spezifikation müssen eine Midamble und die ihr zugeordneten Codekanäle die gleiche Leistung aufweisen. Die folgenden beiden Parameter werden angezeigt, falls eine Common- oder Default Midamble Allocation erkannt wird.

- △MiD1: Leistungsoffset zwischen der Midamble und der Summenleistung der ihr zugeordneten Kanäle im Datenfeld 1
- △MiD2: Leistungsoffset zwischen der Midamble und der Summenleistung der ihr zugeordneten Kanäle im Datenfeld 2

Als aktiv wird ein Datenkanal im Modus *CODE CHAN AUTOSEARCH* dann bezeichnet, wenn er die Mindestleistung aufweist (siehe Softkey *INACT CHAN THRESHOLD*) und ein ausreichendes Signal zu Rauschverhältnis aufweist. Im Modus *CODE CHAN PREDEFINED* werden alle in der vordefinierten Kanaltabelle enthaltenen aktiven Code-Kanäle als aktiv gekennzeichnet.

IEC-Bus-Befehle: :CALCulate<1>:FEED "XTIM:CDP:ERR:CTABle" :CONFigure:CDPower:CTABle:ORDer CODE :CONFigure:CDPower:CTABle:ORDer MIDamble

Der Softkey SYMBOL CONST selektiert die Auswertung des Constellation-Diagramms auf Symbolebene. Die Anzeige ist normiert auf die Quadratwurzel der mittleren Symbolleistung.

Die Auswertung der Symbole erfolgt für den gewählten Kanal (Softkey SELECT CHANNEL) und den gewählten Slot (Softkey SELECT SLOT). Somit berücksichtigt diese Auswertung Ergebnisse eines Kanals für einen Slot.

 IEC-Bus-Befehl:
 :CALCulate<2>:FEED "XTIM:CDP:SYMB:CONS"

Der Softkey SYMBOL EVM selektiert die Auswertung Symbol Error Vector Magnitude. Die Auswertung der EVM erfolgt für den gewählten Kanal (Softkey SELECT CHANNEL) und den gewählten Slot (Softkey SELECT SLOT). Somit berücksichtigt diese Auswertung Ergebnisse eines Kanals für einen Slot.

Eine Auswertung von Symbol Error Vector Magnitude für nicht belegte Codes ist nicht sinnvoll und liefert ungültige Ergebnisse.

IEC-Bus-Befehl: :CALCulate<2>:FEED "XTIM:CDP:SYMB:EVM"

Der Softkey *BITSTREAM* selektiert die Auswertung des Bitstroms aus dem demodulierten Empfangssignal.

Die Auswertung der entschiedenen Bits erfolgt für den gewählten Kanal (Softkey *SELECT CHANNEL*) und den gewählten Slot (Softkey *SELECT SLOT*). Somit berücksichtigt diese Auswertung Ergebnisse eines Kanals für einen Slot.

Abhängig vom Spreading-Faktor des Kanals können in einem Slot minimal 44 bis maximal 704 Symbole enthalten sein. Bei QPSK-modulierten Kanälen besteht ein Symbol immer aus 2 Bits. Bei 8PSK-modulierten Kanälen besteht ein Symbol immer aus 3 Bits. Die Zuordnung von Symbolen zu Bits erfolgt anhand der TD-SCDMA-Spezifikation.

Bild 5-20 Zustandsdiagramm für QPSK und 8PSK inkl. Bitwerten

Der Marker kann dazu verwendet werden, im Bitstream zu scrollen.

	BITSTREAM		C	F 2.2	GHz		DR Cha Slo	17. an	6 ksp 1.1	6 6								EXT
Ref 10.1 dBm Att 45 dB	0 48 96	101 101 011	111 011 100	101 110 110	010 000 000	010 111 001	110 111 111	011 010 110	110 111 110	000 010 101	110 111 001	000 001 010	110 100 111	000	110	101 110	111 001	в

Konfiguration der TD-SCDMA-Messungen

Der Softkey *COMPOSITE CONST* selektiert die Auswertung des Konstellations-Diagramms auf Chip-Ebene.

Bei der COMPOSITE CONST wird das Gesamtsignal über den gewählten Slot (Softkey *SELECT SLOT*) berücksichtigt. Es wird für jeden der 704 Chips der Datenbereiche ein Konstellationspunkt in das Diagramm eingetragen. Die Anzeige ist normiert auf die Quadratwurzel der mittleren Chipleistung.

Bild 5-22 Composite Constellation Diagram

Hinweis: Wenn im gewählten Slot nur ein Kanal aktiv ist, liegen alle Konstellationspunkte auf dem Einheitskreis und belegen bei geringem Rauschen nur jeweils ein Pixel auf dem Display. In diesem Fall ist es sinnvoll, für eine deutlichere Anzeige in die Symbol Constellation des aktiven Kanals zu wechseln.

IEC-Bus-Befehl:

:CALCulate<2>:FEED "XTIM:CDP:COMP:CONS"

I	OWER	1
VS	SYMBOL	
		1
)

Der Softkey *POWER VS SYMBOL* selektiert die Auswertung Power-versus-Symbol. Die Auswertung gibt die absolute Leistung in dBm an jedem Symbolzeitpunkt für den gewählten Kanal (Softkey *SELECT CHANNEL*) im gewählten Slot (Softkey *SELECT SLOT*) aus. Somit berücksichtigt diese Auswertung Ergebnisse eines Kanals für einen Slot.

IEC-Bus-Befehl:

:CALCulate<2>:FEED "XTIM:CDP:PVSY"

Mit Hilfe des Softkeys *SELECT CHANNEL* kann ein Kanal ausgewählt werden. Alle Auswertungen, die Ergebnisse für einen Kanal berücksichtigen, geben die Ergebnisse für den neu ausgewählten Kanal an: POWER VS SLOT, POWER VS SYMBOL, RESULT SUMMARY, BITSTREAM, SYMBOL CONSTELLATION und SYMBOL EVM.

In den Auswertungen CODE DOMAIN POWER, CODE DOMAIN ERROR POWER und CHANNEL TABLE (alle im Screen A) wird der selektierte Kanal zur Veranschaulichung rot markiert.

Die Eingabe eines Kanals erfolgt dezimal in der Form <Kanalnummer>. <Spreading-Faktor> mit einem Dezimalpunkt als Trennzeichen. Statt einer Kanalnummer kann auch eine Codenummer ohne folgenden Dezimalpunkt und Spreading-Faktor angegeben werden. Diese wird dann auf den Spreading-Faktor 16 bezogen.

Existiert in der aktuellen Kanaltabelle ein gebündelter Kanal, zu dem der selektierte Kanal gehört, so wird dieser gebündelte Kanal mit zugehöriger Kanalnummer und Spreading-Faktor im Funktionsfeld angezeigt und in den entsprechenden Auswertungen rot markiert.

Beispiel 1:

Eingabe des Kanals 5.8.

In der Kanaltabelle ist der Kanal 3.4 aktiv, der auch die Kanäle 5.8 und 6.8 umfasst.

Im Eingabefeld wird der Kanal 3.4 angezeigt und im Screen A rot markiert.

Beispiel 2:

Eingabe der Codenummer 9.

In der Kanaltabelle ist der Kanal 3.4 aktiv, der die Codenummern 9, 10, 11 und 12 umfasst.

Im Eingabefeld wird der Kanal 3.4 angezeigt und im Screen A rot markiert.

Das Drehradverhalten ist abhängig von der Auswertung im Screen A und ist auf die graphische Anzeige abgestimmt. Mit dem Drehrad wird immer der benachbarte Kanal selektiert. Bei der Kanaltabelle wird mit dem Drehrad durch die angezeigte Liste gescrollt.

IEC-Bus-Befehl: :[SENSe:]CDPower:CODE 1...16

Der Softkey *SELECT SLOT* dient zur Auswahl eines Slots. Die Eingabe des Slots erfolgt dezimal. Hierbei ist der Wertebereich von 0 bis (IQ-Capture-Length-1), siehe Softkey *CAPTURE LENGTH*. Alle Auswertungen, die Ergebnisse für einen Slot berücksichtigen, geben die Ergebnisse für den neu gewählten Slot an. (CODE DOMAIN POWER, CODE DOMAIN ERROR POWER, CHANNEL TABLE, POWER vs SYMBOL, RESULT SUMMARY, BITSTREAM, SYMBOL CONSTELLATION und SYMBOL EVM)

In den Auswertungen POWER vs SLOT, COMPOSITE EVM und PEAK CODE DOMAIN ERROR wird der selektierte Slot rot markiert.

IEC-Bus-Befehl: :[SENSe:]CDPower:SLOT 0 ... (IQ CAPTURE LENGTH-1)

Der Softkey *ADJUST REF LVL* passt den Referenzpegel des Analysators an die gemessene Kanalleistung an. Damit wird sichergestellt, dass die Einstellungen der HF-Dämpfung und des Referenzpegels optimal an den Signalpegel angepasst werden, ohne dass der Analysator übersteuert wird oder die Dynamik durch zu geringen Signal-Rauschabstand eingeschränkt wird.

IEC-Bus-Befehl: SENS: POW: ACH: PRES: RLEV

Konfiguration der Messungen

Hotkey CHAN CONF

Der Hotkey *CHAN CONF* öffnet ein Untermenü mit den Konfigurationsmöglichkeiten für die Kanalsuche. In diesem Untermenü können vordefinierte Kanaltabellen ausgewählt werden, die dann für die Messungen des Code-Domain-Analyzers zu Grunde gelegt werden.

Bei Anwahl des Hotkeys wird eine Tabelle mit den auf der Festplatte des Messgerätes abgespeicherten Kanaltabellen geöffnet. Die Tabelle dient hier lediglich der Übersicht, erst nach Anwahl des Softkeys *CODE CHAN PREDEFINED* kann eine der Tabellen für die Messung ausgewählt werden. Der Eintrag *RECENT* ist dabei die Kanaltabelle der letzten durchgeführten Code-Domain-Power-Analyse.

IEC-Bus-Befehl:

:CONFigure:CDPower[:BTS]:CTABle:CATalog?

Der Softkey CODE CHAN AUTOSEARCH ermöglicht Messungen des Code-Domain-Power-Analysators im automatischen Suchmodus. In diesem Modus wird der gesamte Code-Raum (alle zulässigen Symbolraten und Kanalnummern) nach aktiven Kanälen durchsucht. Ein Kanal ist dann aktiv, wenn die vom Benutzer eingegebene Mindestleistung im Bezug auf die Gesamtleistung überschritten wird (siehe *Softkey INACT CHAN THRESHOLD*) und ein ausreichendes Signal-zu-Rauschverhältnis vorliegt.

Der Modus *CODE CHAN AUTOSEARCH* ist der voreingestellte Such-Modus, mit dem die CDP-Analyse startet. Er dient vor allem dazu, dem Benutzer einen Überblick über die im Signal enthaltenen Kanäle zu verschaffen. Sind im Signal Kanäle enthalten, die im automatischen Such-Modus nicht als aktiv erkannt werden, kann durch Umschalten auf den Modus *CODE CHAN PREDEFINED* die CDP-Analyse mit vordefinierten Kanal-Konfigurationen vorgenommen werden.

IEC-Bus-Befehl::CONFigure:CDPower[:BTS]:CTABle[:STATe] OFF

Der Softkey *CODE CHAN PREDEFINED* überführt die CDP-Analyse in den Messmodus unter Zuhilfenahme vordefinierter Kanaltabellen. In diesem Modus wird im ausgewählten Slot keine Suche nach aktiven Kanälen im Code-Raum durchgeführt, sondern es werden die Kanäle einer vor der Messung definierten Kanaltabelle als aktiv vorausgesetzt. Bei Anwahl des Softkeys wird eine Tabelle mit sämtlichen auf dem Messgerätabgespeicherten Kanaltabellen geöffnet. Die CDP-Analyse wird auf den Modus "vordefinierte Kanaltabelle" umgestellt. Dabei wird zunächst die letzte Tabelle des automatischen Suchmodus der Messung zu Grunde gelegt. Diese Tabelle steht unter dem Eintrag *RECENT* zur Verfügung. Ein Umschalten auf eine der vordefinierten Kanaltabellen erfolgt durch Auswahl des entsprechenden Tabelleneintrages und Betätigung einer der Einheitentasten oder der Enter-Taste. Ab der nächsten Messung wird die gewählte Kanaltabelle der Auswertung im gewählten Slot zu Grunde gelegt. Die gewählte Kanaltabelle wird in der Auswahl mit einem Haken markiert.

CONF TABLE	HEADER						ausgewanne						
J. T.	VALUES	Kanaltabelle,	in der die	Kanaikontig	uration v	erandert w	/erden kann						
	ADD SPECIAL	Zusätzlich w Kanaltabelle	ird ein Untern nötigen Softko	nenü geöffn eys.	iet, mit de	n für das	Editieren de						
	INSERT	EDIT CHANNEL TABLE											
	LINE	NAME :	My_First_Chan		MA SHIFTS CELL 16								
		COMMENT:	Base Station '	fest 1									
	LINE	TYPE	CHAN.SF	Modulation Type	Data Rate [kbps]	Midamble Shift	STATUS						
	MEAS CHAN	MIDAMBLE				1	ACTIVE						
	CONF TABLE	PCCPCH	1.16	QPSK	17.6		ACTIVE						
		DPCH	2.16	QPSK	17.6		ACTIVE						
	SAVE TABLE SELECT SLOT												
	SORT CODE												
	SORT MIDAMBLE												

Der Softkey EDIT CHAN CONE TABLE öffnet die ausgewählte

Bild 5-24 Tabelle zum Editieren einer Kanalkonfiguration

Grundsätzlich kann jede der auf dem Messgerät abgespeicherten Kanaltabellen nach Belieben verändert werden. Eine Abspeicherung der editierten Tabelle auf der Festplatte des Messgerätes erfolgt nicht automatisch, sondern erst nach Anwahl des Softkeys SAVE TABLE. Damit wird ein versehentliches Überschreiben einer Tabelle verhindert.

Wird eine Tabelle editiert, die momentan der Code-Domain-Power-Analyse zu Grunde liegt, wird die editierte Tabelle sofort nach Abspeicherung für die nächste Messung genutzt. Die Auswirkungen der Veränderungen in der Tabelle sind daher sofort sichtbar. Auch hier wird die editierte Tabelle jedoch erst nach Anwahl des Softkeys SAVE TABLE auf der Festplatte des Messgerätes abgespeichert.

Wird eine Tabelle editiert, die zwar auf der Festplatte des Messgerätes gespeichert, aber momentan nicht aktiviert ist, werden die Änderungen erst nach Abspeicherung (Softkey SAVE TABLE) und anschließender Aktivierung sichtbar.

Wird eine Änderung der Kanalnummer oder des Spreading-Faktors vorgenommen, wird nach Drücken der Eingabe (Einheiten-Tasten) eine Überprüfung auf Code-Domain-Konflikte durchgeführt. Wird ein Code-Domain-Konflikt detektiert, werden die zugehörigen Kanäle mit einem Stern gekennzeichnet. Dem Benutzer wird die Möglichkeit gegeben, die Code-Domain-Konflikte zu beseitigen. Bei Nutzung einer Tabelle mit Code-Domain-Konflikten für eine CDP-Analyse sind die Ergebnisse ungültig.

Der Softkey *HEADER/VALUES* setzt den Fokus der Editiermöglichkeit entweder auf die Einträge in der Tabelle oder auf den Tabellenkopf.

Editieren des Tabellenkopfes (HEADER):

Hier werden Einstellungen vorgenommen, die für die ganze Tabelle gültig sind. Folgende Einträge sind vorhanden (Bestätigung einer Eingabe mit Hilfe der Einheiten-Tasten):

NAME: Name der Kanaltabelle. Durch die Änderung des Namens der Tabelle kann eine Überschreibung von bereits abgespeicherten Tabellen verhindert werden. Der Name einer Tabelle darf nicht mehr als 8 Zeichen enthalten.

- COMMENT: Kommentar zur Kanaltabelle, z.B. Beschreibung der Slotbelegung.
- MASHIFTSCELL: Maximale Anzahl benutzbarer Midamble Shifts. Im Modus CODE CHAN PREDEFINED ersetzt dieser Eintrag den Wert aus dem SETTINGS-Menü (siehe auch Softkey SETTINGS, MA SHIFTS CELL).

IEC-Bus-Befehle

CONFigure:CDPower[:BTS]:CTABle:NAME "NEW_TAB" CONFigure:CDPower[:BTS]:CTABle:COMMent "comment" CONFigure:CDPower[:BTS]:CTABle:MSHift <numeric>

Editieren der Einträge in der Tabelle (VALUES):

Hier werden die eigentlichen Daten der Kanaltabelle editiert. Für jeden der in der Tabelle enthaltenen Kanäle sind dabei folgende Einträge vorhanden (Bestätigung einer Eingabe mit Hilfe der Einheiten-Tasten):

- TYPE: Kanaltyp. Es kann Midamble oder Codekanal ausgewählt werden. Sonderkanäle werden namentlich gekennzeichnet (P-CCPCH, S-CCPCH, FPACH, PDSCH, PICH). Alle anderen Kanäle erhalten den Eintrag DPCH (Dedicated Physical Channel) für normale Datenkanäle.
- CHAN.SF: Für den Kanal wird in dieser Spalte die Kanalnummer und der Spreading-Faktor eingegeben. Bei Eingabe ohne Dezimalpunkt wird der Spreading-Faktor 16 verwendet. Ungültige Eingaben werden abgelehnt.

MODULATION TYPE:

Modulationsart des Kanals. Es kann zwischen QPSK und 8PSK ausgewählt werden.

- DATA RATE: Datenrate des Kanals. Sie hängt direkt vom Spreading-Faktor und von der Modulationsart des Kanals ab und ist deshalb nicht editierbar.
- MIDAMBLE SHIFT: Für den Kanaltyp Midamble muss hier die Midamble-Shift-Nummer eingegeben werden. Es sind Eingaben von 1 bis zur maximalen Anzahl Midambles möglich. Für den Kanaltyp Code Channel kann hier ein Kanal einer bestimmten Midamble zugeordnet werden. Diese Zuordnung wird dann anstelle der automatischen Zuordnung verwendet.
- STATUS: Der Eintrag kann aktiv oder inaktiv geschaltet werden. Inaktive Einträge werden bei den Messungen nicht berücksichtigt.

IEC-Bus-Befehl: :CONFigure:CDPower[:BTS]:CTABle:DATA

2,4,1,1,	1,1,0,0	,
----------	---------	---

2,4,2,1,1,1,0,0

'Definiert 2 Datenkanäle mit QPSK-Modulation

Der Softkey ADD SPECIAL ermöglicht das Hinzufügen von Sonderkanälen zur Kanaltabelle.

Bild 5-25 Tabelle der Sonderkanäle

Alle nicht aufgeführten Kanäle werden als DPCH über den Softkey *Insert Line* eingegeben. Die Angabe von Sonder-Datenkanälen dient in der R&S FS-K76 nur der Übersicht. Die Code-Domain-Messungen unterscheiden nicht zwischen Sonderkanälen und Datenkanälen mit gleichen Parametern.

Der Softkey *INSERT LINE* fügt der Tabelle einen neuen Eintrag hinzu. Die Einträge können in jeder beliebigen Ordnung erfolgen. Ein Kanal wird nur dann in die CDP-Analyse mit einbezogen, wenn alle benötigten Einträge in der Liste vorhanden sind.

IEC-Bus-Befehl: --

Der Softkey DELETE LINE löscht die markierte Zeile aus der Tabelle.

IEC-Bus-Befehl: --

Der Softkey *MEAS CHAN CONF TABLE* startet eine Messung im Modus *CODE CHAN AUTOSEARCH*. Die Ergebnisse der Messung werden in die geöffnete Kanaltabelle übernommen.

IEC-Bus-Befehl: --

Der Softkey SAVE TABLE speichert die Tabelle unter dem angegebenen Namen ab.

Achtung: Eine Editierung der Kanalmodelle und Abspeicherung unter dem ursprünglichen Namen führt zu einer Überschreibung der Modelle!

IEC-Bus-Befehl: -- (bei Fernbedienung automatisch)

Der Softkey *SELECT SLOT* dient zur Auswahl des Slots, auf den die Kanaltabelle angewendet wird. Dies ist gleichzeitig der Slot, bei dem die slotabhängigen Auswertungen vorgenommen werden.

IEC-Bus-Befehl: --

Der Softkey *SORT CODE* sortiert die Kanaltabelle in der Code-Ordnung. Es werden zunächst alle Midambles aufsteigend nach ihrem Midamble-Shift sortiert. Ihnen folgen die Codekanäle, die aufsteigend nach Spreading-Faktoren und innerhalb gleicher Spreading-Faktoren aufsteigend nach Codenummern sortiert werden.

IEC-Bus-Befehl: --

Der Softkey SORT MIDAMBLE sortiert die Kanaltabelle in der Midamble-Ordnung. Es werden nach jeder Midamble die zugehörigen Codes aufgeführt.

IEC-Bus-Befehl: --

CONF TABLE

Der Softkey *DEL CHAN CONF TABLE* löscht die markierte Tabelle. Die momentan aktive Tabelle im Modus *CODE CHAN PREDEFINED* kann nicht gelöscht werden.

IEC-Bus-Befehl: :CONFigure:CDPower[:BTS]:CTABle:DELete

Der Softkey COPY CHAN CONF TABLE kopiert die ausgewählte Tabelle. Der Name, unter der die Kopie gespeichert werden soll, wird abgefragt.

IEC-Bus-Befehl:

:CONFigure:CDPower[:BTS]:CTABle:COPY "CTAB2"

Der Softkey *NEW CHAN CONF TABLE* öffnet ein Untermenü, das mit dem für den Softkey *EDIT CHAN CONF TABLE* beschriebenen identisch ist. Im Unterschied zu *EDIT CHAN CONF TABLE* wird jedoch bei *NEW CHAN CONF TABLE* eine leere Tabelle zur Verfügung gestellt:

Konfiguration der TD-SCDMA-Messungen

		EDIT CHANNEL	TABLE					
NAME :	default			MA SHIFTS CELL 16				
COMMENT:	default							
TYPE	CHAN.SF	Modulation Type	Data Rate [kbps]	Midamble Shift	STATUS			

Bild 5-26 Neuanlegen einer Kanalkonfiguration
FS-K76

Konfiguration der Firmware Applikation –SETTINGS

Hotkey SETTINGS

Der Hotkey *SETTINGS* öffnet ein Untermenü zum Einstellen der Messparameter der Firmware Applikation.

Der Softkey *STANDARD* ermöglicht die Umschaltung zwischen den Normen 3GPP und TSM. Diese Umschaltung betrifft zur Zeit nur die Spectrum Emission Mask.

IEC-Bus-Befehl: : [SENSe:]CDPower:STANdard GPP | TSM

Der Softkey *SCRAMBLING CODE* erlaubt die Eingabe des Scrambling Codes der Basisstation. Der Scrambling Code wird dezimal eingegeben.

IEC-Bus-Befehl: : [SENSe:]CDPower:SCODe 0...127

Der Softkey *MA SHIFTS CELL* erlaubt die Eingabe der maximalen Anzahl benutzbarer Midamble Shifts der Basisstation. Im Modus *CODE CHAN PREDEFINED* wird dieser Wert durch den Eintrag in der Kanaltabelle ersetzt.

```
IEC-Bus-Befehl: :[SENSe:]CDPower:MSHift 2...16
```

Der Softkey *CAPTURE LENGTH* erlaubt die Eingabe der Anzahl der aufzunehmenden Slots. Der Wertebereich liegt von 2 bis 63. Bei allen Auswertungen, die in der x-Achse einen Wert pro Slot aufweisen, ist der maximale Wert auf der x-Achse die eingestellten CAPTURE LENGTH -1.

IEC-Bus-Befehl: :[SENSe:]CDPower:IQLength 2...63

STANDARD

3GPP TSM

SCRAMBLING

CODE

MA SHIFTS

CELI

CAPTURE

LENGTH

Konfiguration der TD-SCDMA-Messungen

INACT CHAN THRESHOLD	Der Softkey INACT CHAN THRESHOLD erlaubt die Eingabe der relativen minimalen Leistung, die ein Einzelkanal in Relation zum Gesamtsignal haben muss, um als aktiver Kanal angesehen zu werden. Kanäle, die unterhalb der angegebenen Schwelle liegen, werden als "nicht aktiv" angesehen. Die beiden Messungen COMPOSITE EVM und PEAK CODE DOMAIN ERR, die als Messungen am Gesamtsignal spezifiziert sind, werden unter Zuhilfenahme der Liste der aktiven Kanäle durchgeführt. Verfälschungen dieser beiden Messungen ergeben sich immer dann, wenn aktive Kanäle nicht als aktiv erkannt werden bzw. unbelegte Kanäle fälschlicherweise den Status "belegter Kanal" erhalten. Mit INACT CHAN THRESHOLD lassen sich die Ergebnisse beider Messungen daher beeinflussen. Der Default-Wert ist –40 dB. Werden nicht alle im Signal enthaltenen Kanäle automatisch detektiert, muss INACT CHAN THRESHOLD dekrementiert werden. Werden nicht vorhandene Kanäle detektiert, muss INACT CHAN THRESHOLD inkrementiert werden.
CODE PWR ABS REL	Der Softkey <i>CODE PWR ABS/REL</i> selektiert für die Auswertung CODE DOMAIN POWER und POWER VS SLOT, ob die y-Werte absolut (dBm) oder relativ (dB) angezeigt werden. Bei relativer Auswertung ist der Bezug die mittlere Gesamtleistung der Datenbereiche des gewählten Slots.
	<pre>IEC-Bus-Befehl: :CALCulate<1>:FEED "XPOW:CDP:RAT" (relative) :CALCulate<1>:FEED "XPOW:CDP" (absolute) :CALCulate<1>:FEED "XTIM:CDP:PVSL:RAT" (relative) :CALCulate<1>:FEED "XTIM:CDP: PVSL " (absolute)</pre>
INVERT Q ON OFF	Der Softkey <i>INVERT</i> Q invertiert das Vorzeichen des Q-Anteils des Signals. Grundeinstellung ist OFF.
<u> </u>	IEC-Bus-Befehl: :[SENSe]:CDP:QINVert OFF
SIDE BAND NORM INV	Der Softkey SIDEBAND NORM / INV wählt zwischen Messung des Signals in normaler (NORM) und invertierter spektraler Lage (INV).
	NORM Die normale Lage erlaubt die Messung von RF-Signalen der Basisstation.
	INV Die invertierte Lage ist sinnvoll für Messungen an ZF-Modulen oder Komponenten im Falle spektraler Inversion.
	Die Grundeinstellung ist NORM.
	IEC-Bus-Befehl: :[SENSe:]CDPower:SBANd NORMal INVers
NORMALIZE ON OFF	Der Softkey <i>NORMALIZE ON / OFF</i> entfernt den DC-Offset des Signals. Grundeinstellung des Parameters ist OFF.
	IEC-Bus-Befehl: :[SENSe:]CDP:NORMalize OFF

Frequenz-Einstellung – Taste FREQ

FREQ	CENTER	Die Taste FREQ öffnet ein Untermenü zur Veränderung der Messfrequenz.
	CF- STEPSIZE	Der Softkey <i>CENTER</i> öffnet das Eingabefenster zur manuellen Eingabe der Mittenfrequenz. Der zulässige Eingabebereich der Mittenfrequenz beträgt Minspan/2 $\leq f_{center} \leq f_{max} - Minspan/2$
		f _{center} Mittenfrequenz
		Minspan kleinster einstellbarer Span >0 Hz (10Hz)
		f _{max} Maximalfrequenz
		IEC-Bus-Befehl: :FREQ:CENT 100MHz
	FREQUENCY OFFSET	<i>CF-STEPSIZE</i> führt in ein Untermenü zur Schrittweiteneinstellung der Änderung der Mittenfrequenz. Hier besteht die Möglichkeit, die Schrittweite manuell einzugeben (Softkey <i>MANUAL</i>) oder die momentane Messfrequenz zur Schrittweitensteuerung zu nutzen (Softkey <i>=CENTER</i>). Die Softkeys sind im Handbuch des Grundgerätes beschrieben.
		Der Softkey <i>FREQUENCY OFFSET</i> aktiviert die Eingabe eines rechnerischen Frequenzoffsets, der zur Frequenzachsenbeschriftung addiert wird. Der Wertebereich für den Offset ist -100 GHz bis 100 GHz. Die Grundeinstellung ist 0 Hz.
		IEC-Bus-Befehl: :FREQ:OFFS 10 MHz

Span-Einstellungen – Taste SPAN

Die Taste *SPAN* ist für Messungen im Code-Domain-Analyzer gesperrt. Für alle anderen Messungen (siehe Taste MEAS) sind die zulässigen Span-Einstellungen bei der jeweiligen Messung erläutert. Das zugehörige Menü entspricht dem der Messung im Grundgerät und ist im Grundgerätehandbuch beschrieben.

Pegel-Einstellung – Taste AMPT

АМРТ	REF LEVEL	Die Taste AMPT öffnet ein Untermenü zur Einstellung des Referenzpegels.				
_₽	ADJUST REF LEVEL	Der Softkey <i>REF LEVEL</i> aktiviert die Eingabe des Referenzpegels. Die Eingabe erfolgt in dBm.				
		IEC-Bus-Befehl: :DISP:WIND:TRAC:Y:RLEV -60dBm				
		ADJUST REF LEVEL führt eine Routine zur bestmöglichen Anpassung des Referenzpegels an das Signal aus.				
	Y PER DIV	IEC-Bus-Befehl : :[SENSe<1 2>:]CDPower:LEVel:ADJust				
	REF VALUE POSITION	Y PER DIV legt die Grid-Unterteilung der y-Achse für alle Diagramme, bei denen diese möglich ist, fest.				
		<pre>IEC-Bus-Befehl: DISPlay[:WINDow<1 2>]:TRACe<13>:Y[:SCALe]:RPOSition</pre>				
	RF ATTEN MANUAL	<i>REF VALUE POSITION</i> ermöglicht die Eingabe der Position, die der Bezugswert der y-Achse auf der Achse einnehmen soll (0 – 100 %).				
	RF ATTEN AUTO	<pre>IEC-Bus-Befehl: :DISPlay[:WINDow<1 2>]:TRACe<13>:Y[:SCALe]:PDIVision</pre>				
		Der Softkey <i>RF ATTEN MANUAL</i> aktiviert die Eingabe der Dämpfung, unabhängig vom Referenzpegel. Kann bei der gegebenen HF-Dämpfung der vorgegebene Referenzpegel nicht mehr eingestellt werden, wird dieser angepasst und die Meldung "Limit reached" ausgegeben.				
		IEC-Bus-Befehl: INP:ATT 40 DB				
		Der Softkey <i>RF ATTEN AUTO</i> stellt die HF-Dämpfung abhängig vom eingestellten Referenzpegel automatisch ein. Damit ist sichergestellt, dass immer die vom Benutzer gewünschte optimale HF-Dämpfung verwendet wird. <i>RF ATTEN AUTO</i> ist die Grundeinstellung.				
		IEC-Bus-Befehl: INP:ATT:AUTO ON				

FS-K76

Marker-Einstellungen – Taste MKR

		Die Taste MARKER öff	net ein Untermenü für die Markereinstellungen.
	MARKER 1	Manlana alah £25 ali - Ass	
	MARKER 2	<i>TABLE</i> nicht verfügbar vier Marker aktiviert	ar. In allen anderen Auswertungen können bis zu werden, die mit Hilfe des Softkeys MARKER
	MARKER 3	NORM/DELTA als Mar	ker oder Delta-Marker definiert werden können.
		Die Softkeys MARKER	1/2/3/4 wählen den betreffenden Marker aus und
	MARKER 4	schalten ihn gleichzeitig Marker 1 ist immer nac	g ein. ch dem Einschalten Normal-Marker, Marker 2 bis
	MARKER NORM DELTA	4 sind nach dem Einschalten Deltamarker, die sich auf Marker beziehen. Über den Softkey <i>MARKER NORM DELTA</i> können die Marker in Marker mit absoluter Messwertanzeige umgewandelt werd Ist Marker 1 der aktive Marker, so wird mit <i>MARKER NORM DELTA</i> zusätzlicher Deltamarker eingeschaltet. Durch nochmaliges Drücken der Softkeys <i>MARKER 1</i> bis <i>MARKER</i> wird der ausgewählte Marker ausgeschaltet.	
		IEC-Bus-Befehl:	:CALC:MARK ON;
			:CALC:MARK:X <value>;</value>
			:CALC:MARK:Y?
	ALL MARKER OFF		:CALC:DELT ON;
			:CALC:DELT:MODE ABS REL
			:CALC:DELT:X <value>;</value>

Der Softkey *ALL MARKER OFF* schaltet alle Marker (Referenz- und Deltamarker) aus. Ebenso schaltet er die mit den Markern oder Delta-Markern verbundenen Funktionen und Anzeigen ab.

:CALC:DELT:X:REL? :CALC:DELT:Y?

IEC-Bus-Befehl: :CALC:MARK:AOFF

Für einen eingeschalteten Marker werden oberhalb der Diagramme die den Marker betreffenden Parameter ausgegeben:

Marker 1 [T1]	
DR 70.4kbps Chan	-5.00 dB 1.4 Code 3

Bild 5-27 Marker-Feld der CDP-Messung

Für alle anderen Messungen, die nicht zum Code-Domain-Analyzer gehören, gelten die Marker-Funktionen des Grundgerätes.

Marker-Einstellungen – Taste *MKR→*

_	SELECT
MKR->	MARKER
G	PEAK
l III)	
	NEXT PEAK
	NEXT MODE
	LEFT RIGHT
	DEAK MODE
	MIN MAX

Die Taste $MKR \rightarrow$ öffnet ein Untermenü für Marker-Funktionen:

Der Softkey SELECT MARKER wählt den gewünschten Marker in einem Dateneingabefeld aus. Ist der Marker ausgeschaltet, so wird er eingeschaltet und kann anschließend verschoben werden. Die Eingabe erfolgt numerisch. Deltamarker 1 wird durch Eingabe von '0' ausgewählt.

IEC-Bus-Befehl:

:CALC:MARK1 ON; :CALC:MARK1:X <value>; :CALC:MARK1:Y?

Der Softkey *PEAK* setzt den aktiven Marker bzw. Deltamarker auf das Maximum/Minimum der zugehörigen Messkurve.

Wenn bei Aufruf des Menüs *MKR->* noch kein Marker aktiviert war, wird automatisch Marker 1 eingeschaltet und die Peak-Funktion ausgeführt.

IEC-Bus-Befehl:	:CALC:MARK:MAX
	:CALC:DELT:MAX
	:CALC:MARK:MIN
	:CALC:DELT:MAX

Der Softkey *NEXT PEAK* setzt den aktiven Marker bzw. Deltamarker auf den nächstkleineren Maximal-/Minimalwert der zugehörigen Messkurve. Die Suchrichtung wird durch den Softkey *NEXT MODE LEFT/RIGHT* vorgegeben.

IEC-Bus-Befehl: :CALC:MARK:MAX:NEXT :CALC:DELT:MAX:NEXT

CALC: MARK: MAX: NEXT CALC: DELT: MAX: NEXT CALC: MARK: MIN: NEXT CALC: DELT: MIN: NEXT

Der Softkey NEXT MODE LEFT/RIGHT legt die Suchrichtung für die Suche nach dem nächsten Maximal-/Minimalwert fest. Für SEARCH NEXT LEFT/RIGHT wird nach dem nächsten Signalmaximum links/rechts vom aktivem Marker gesucht. D. h. nur Signalabschnitte kleiner/größer als die aktuelle Markerposition werden in die Suche einbezogen.

IEC-Bus-Befehle: CA

CALC:MARK:MAX:LEFT CALC:DELT:MAX:LEFT CALC:MARK:MIN:LEFT CALC:DELT:MIN:LEFT CALC:MARK:MAX:RIGH CALC:DELT:MAX:RIGH CALC:MARK:MIN:RIGH CALC:DELT:MIN:RIGH

Der Softkey *PEAK MODE MIN/MAX* legt fest, ob die Peak-Suche den Maximal- oder Minimalwert der Messkurve ermitteln soll. Der Parameter hat Auswirkungen auf das Verhalten der Softkeys *PEAK* und *NEXT PEAK*.

IEC-Bus-Befehl: --

Marker-Funktionen – Taste MKR FCTN

Die Taste *MKR FCTN* ist für alle Messungen des Code-Domain-Analyzers gesperrt. Für alle anderen Messungen der R&S FS-K76 sind die Softkeys des Menüs im Handbuch des Grundgerätes beschrieben.

Bandbreiten-Einstellung – Taste BW

Die Taste *BW* ist für alle Messungen des Code-Domain-Analyzers gesperrt. Für alle anderen Messungen der R&S FS-K76 sind die dem Menü zugehörigen Softkeys im Handbuch des Grundgerätes beschrieben.

Steuerung des Messablaufs – Taste SWEEP

Das Menü der Taste *SWEEP* enthält Möglichkeiten zur Umschaltung zwischen Einzelmessung und kontinuierlichem Messablauf sowie zur Steuerung von Einzelmessungen. Für Messungen im Spektralbereich kann außerdem die Messzeit für einen Durchlauf eingestellt werden. Alle dem Menü zugehörigen Softkeys sind im Handbuch des Grundgerätes beschrieben.

Auswahl der Messung – Taste MEAS

Im Menü der Taste *MEAS* finden sich alle in der R&S FS-K76 per Knopfdruck auswählbaren Messungen. Das Menü mit seinen Untermenüs ist im Kapitel 5 beschrieben.

Trigger-Einstellungen – Taste TRIG

Die auswählbaren Trigger-Möglichkeiten sind von der gewählten Messung abhängig. Für den Code-Domain-Power-Analyzer ist ein Free-Run-Betrieb oder die Verwendung eines externen Triggers möglich. Für alle anderen Messungen sind die Triggermöglichkeiten identisch mit denen der korrespondierenden Messung im Grundgerät. Die zugehörigen Softkeys sind im Grundgeräte-Handbuch beschrieben.

Trace-Einstellungen – Taste TRACE

		Die Taste TRACE öffnet folgendes Untermenü:
		Der Softkey CLEAR/WRITE aktiviert den Überschreibmodus für die aufgenommenen Messwerte, d.h. die Messkurve wird bei jedem
_ <mark>₩</mark>	WRITE	Sweep-Durchlauf neu geschrieben. Nach jeder Betätigung des Softkeys CLEAR/WRITE löscht das Gerät
	MAX HOLD	den angewählten Messwertspeicher und startet die Messung neu.
		IEC-Bus-Befehl: :DISP:WIND:TRAC:MODE WRIT
	MIN HOLD	Der Softkey MAX HOLD aktiviert die Spitzenwertbildung. Der Analysator übernimmt bei jedem Sweep-Durchlauf den neuen
	AVERAGE	Messwert nur dann in die gespeicherten Trace-Daten, wenn er größer als der vorherige ist.
		Erneutes Drücken des MAX HOLD-Softkeys löscht den Messwertspeicher und startet die Spitzenwertbildung von neuem.
		IEC-Bus-Befehl: :DISP:WIND:TRAC:MODE MAXH
	COUNT	Der Softkey MIN HOLD aktiviert die Minimalwertbildung.
		Der Analysator übernimmt bei jedem Sweep-Durchlauf den neuen
		als der vorherige ist.
		Erneutes Drücken des <i>MIN HOLD</i> -Softkeys löscht den Messwertspeicher und startet die Minimalwertbildung von neuem.
		IEC-Bus-Befehl: :DISP:WIND:TRAC:MODE MINH
		Der Softkey <i>AVERAGE</i> schaltet die Trace-Mittelwertbildung ein. Aus mehreren Sweep-Durchläufen wird der Mittelwert gebildet. Die Mittelwertbildung erfolgt abhängig von der Einstellung AVG MODE LOG / LIN auf den logarithmierten Pegelwerten oder auf den gemessenen Leistungen/Spannungen. Die Mittelwertbildung startet immer von neuem, wenn der Softkey <i>AVERAGE</i> gedrückt wird. Der Messwertspeicher wird dabei gelöscht.
		IEC-Bus-Befehl: :DISP:WIND:TRAC:MODE AVER
		Für die Messungen im Code-Domain-Analyzer ist ein AVERAGE/ MAX HOLD oder MIN HOLD möglich. Bei der Auswertung Kanalbelegungstabelle wird die beim ersten Sweep gemessene Kanalkonfiguration für die Trace-Statistik beibehalten. Wenn das Signal umkonfiguriert wird, muss erneut der Softkey SINGLE SWEEP (und gegebenenfalls CONTINOUS SWEEP) gedrückt werden. Die Auswertungen RESULT SUMMARY, BITSTREAM und die CONSTELLATION Diagramme unterstützen grundsätzlich nur den CLEAR WRITE Modus.

Der Softkey *SWEEP COUNT* legt die Anzahl der Sweep-Durchläufe fest, über die der Mittelwert gebildet wird. Der zulässige Wertebereich ist 0 bis 30000, wobei folgendes zu beachten ist:

Sweep Count = 0 bedeutet gleitende Mittelwertbildung mit Mittelungslänge 10 Sweep Count = 1 bedeutet keine Mittelwertbildung Sweep Count > 1 bedeutet Mittelung über die angegebene Zahl von Sweeps, wobei im Continuous Sweep nach Erreichen dieser Anzahl zur gleitenden Mittelwertbildung übergegangen wird. Die Grundeinstellung ist gleitende Mittelwertbildung (Sweep Count = 0). Die Zahl der Sweeps, die zur Mittelung herangezogen werden, ist

0). Die Zahl der Sweeps, die zur Mittelung herangezogen werden, ist für alle aktiven Messkurven im ausgewählten Diagramm gleich der Mittelungslänge 10.

IEC-Bus-Befehl: :SWE:COUN 64

Display-Lines – Taste *LINES*

Die Taste *LINES* ist für alle Messungen des Code-Domain-Analyzers gesperrt. Für alle anderen Messungen sind die Einstellmöglichkeiten des Menüs zu denen der korrespondierenden Messung im Grundgerät äquivalent. Die jeweiligen Softkeys sind im Handbuch des Grundgerätes beschrieben.

Einstellungen des Messbildschirms – Taste *DISP*

Das Menü der Taste *DISP* enthält Softkeys zur Konfiguration des Messbildschirms. Die Menüs und die Eigenschaften der Softkeys sind im Handbuch des Grundgerätes beschrieben.

Speichern und Laden von Gerätedaten – Taste FILE

Das Menü FILE ist identisch mit dem des Grundgerätes. Alle Softkeys sind im Grundgeräte-Handbuch beschrieben.

Alle nicht gesondert angeführten Tasten der Geräte-Frontplatte sind identisch mit denen des Grundgerätes. Die Funktionen der Tasten sowie die Softkeys sind im Handbuch des Grundgerätes beschrieben.

6 Fernbedienbefehle

Das folgende Kapitel beschreibt die Fernbedien-Befehle für die Applikations-Firmware. Die Befehle, die auch für das Grundgerät in der Betriebsart SPECTRUM gelten, sowie die Systemeinstellungen sind im Bedienhandbuch des Analysators beschrieben.

CALCulate:FEED – Subsystem

Das CALCulate:FEED - Subsystem wählt die Art der Auswertung der gemessenen Daten aus. Dies entspricht der Auswahl des Result Displays in der Handbedienung.

BEFEHL	PARAMETER	EINHEIT	KOMMENTAR
CALCulate<1 2>			
:FEED	<string></string>		keine Abfrage

:CALCulate<1|2>:FEED <string>

Dieser Befehl wählt die gemessenen Daten aus, die zur Anzeige gebracht werden.

Parameter:	<string>::=</string>	<pre>'XPOW:CDP' 'XPOW:CDP:RAT' 'XPOW:CDEP' 'XTIM:CDP:MACCuracy' 'XTIM:CDP:PVSLot' 'XTIM:CDP:PVSLot:RAT' 'XTIM:CDP:PVSYmbol' 'XTIM:CDP:BSTReam' 'XTIM:CDP:BSTReam' 'XTIM:CDP:ERR:SUMM' 'XTIM:CDP:ERR:CTABle' 'XTIM:CDP:ERR:PCDomain' 'XTIM:CDP:SYMB:CONStellation' 'XTIM:CDP:SYMB:EVM' 'XTIM:CDP:COMP:EVM' 'XTIM:CDP:COMP:CONStellation'</pre>
Die String-Parameter haben folgende Bedeutung:		
'XPOW:ČDP'	0	Ergebnisdarstellung der Code-Domain-Power absolut im
		Balkendiagramm (CALCulate<1>)
'XPOW:CDP:RAT	,	Ergebnisdarstellung der Code-Domain-Power Ratio (relative) im
		Balkendiagramm (CALCulate<1>)
'XPOW:CDEP'		Ergebnisdarstellung der Code-Domain-Error-Power im
		Balkendiagramm (CALCulate<1>)
'XTIM:CDP:ERR:S	SUMM'	Tabellarische Darstellung der Ergebnisse (CALCulate<2>)
'XTIM:CDP:ERR:0	CTABle'	Darstellung der Kanalbelegungstabelle (CALCulate<1>)
'XTIM:CDP:ERR:F	PCDomain'	Ergebnisdarstellung Peak Code Domain Error (CALCulate<2>)
'XTIM:CDP:MACC	Curacy'	Ergebnisdarstellung Composite EVM (CALCulate<2>)
'XTIM:CDP:PVSL	oť	Ergebnisdarstellung Power versus Slot absolut
		(CALCulate<2>)
'XTIM:CDP:PVSL	ot:RAT'	Ergebnisdarstellung Power versus Slot relative
		(CALCulate<2>)
'XTIM:CDP:PVSY	mbol'	Ergebnisdarstellung Power versus Symbol (CALCulate<2>)
'XTIM:CDP:BSTR	eam'	Ergebnisdarstellung Bitstream (CALCulate<2>)
'XTIM:CDP:SYMB	CONStellation'	Ergebnisdarstellung Symbol Constellation (CALCulate<2>)

'XTIM:CDP:SYMB:EVM'Ergebnisdarstellung Error Vector Magnitude (CALCulate<2>)'XTIM:CDP:COMP:CONStellation'Ergebnisdarstellung Composite Constellation (CALCulate<2>)

Beispiel:	"INST:SEL BTDS"	'TD-SCDMA BTS aktivieren
	"INIT:CONT OFF"	'Single Sweep auswählen
	"CALC2:FEED `XTIM:CDP:MACC'"	'COMP EVM Auswertung wählen
	"INIT;*WAI"	'Messung mit Synchronisierung starten
	"TRAC? TRACE2"	'COMP EVM Daten abfragen

Eigenschaften:	*RST-Wert:	'XPOW:CDP:RAT'	(CALCulate<1>)
		'XTIM:CDP:ERR:SUMM'	(CALCulate<2>)
	SCPI:	konform	

Hinweis: Die Code-Domain-Power-Messungen werden immer im Split Screen dargestellt und die Zuordnung der Auswertung zum Messfenster ist fest. Daher ist bei jeder Auswertung in Klammer das numerische Suffix bei CALCulate angegeben, das notwendig bzw. erlaubt ist.

CALCulate:LIMit:ESPectrum Subsystem

Das CALCulate:LIMit:ESPectrum - Subsystem definiert die Grenzwertprüfung bei den Spektralmessungen.

PARAMETER	EINHEIT	KOMMENTAR
AUTO MANual USER		
		nur Abfrage
		nur Abfrage
	PARAMETER AUTO MANual USER	AUTO MANual USER

:CALCulate:LIMit:ESPectrum:MODE AUTO | MANual | USER

Dieser Befehl schaltet die automatische Auswahl der Grenzwertlinie in der Spectrum Emission Mask Messung ein bzw. aus.

Parameter:	AUTO MANUAL USER	die Grenzwertlinie richtet s es wird eine der drei vorge Auswahl erfolgt mit dem Be nur Abfrage, es sind benut eingeschaltet (siehe Besch Handbuch des Gerätes)	ich nach der gemessenen Kanalleistung gebenen Grenzwertlinien eingestellt. Die efehl CALC:LIM:ESP:VAL zerdefinierte Grenzwertlinien reibung der Grenzwertlinien im	
Beispiel:	"INST:SEL BTDS" "INIT:CONT OFF" "CONF:CDP:MEAS ESP"		'TD-SCDMA BTS aktivieren 'Single Sweep auswählen 'Messung Spektrum Emission	
	"CALC:LIM:	ESP:MODE AUTO"	'Mask auswählen 'Aktiviert automatische Auswahl der 'Grenzwertlinie	
	"INIT;*WA]	I "	'Messung mit Synchronisierung starten	
	"CALC:LIM:	FAIL?"	Ergebnis des Limitchecks abtragen	
Eigenschaften:	*RST-Wert: SCPI:	AUTO gerätespezifisch		

:CALCulate:LIMit:ESPectrum:VALue <numeric_value>

Dieser Befehl schaltet auf manuelle Auswahl der Grenzwertlinien um. Die Grenzwertlinie wird ausgewählt, indem die erwartete Leistung als Wert angegeben wird. Je nach eingegebenem Wert wird eine der drei möglichen Grenzwertlinien ausgewählt:

angegebener Wert Wert \geq 34 26 \leq Wert < 34	t in dBm	ausgewählte Grenzwe "P \geq 34" "26 \leq P < 34"	rtlinie	Wert bei Abfrage 34 26
Wert < 26		"P < 26"		0
Beispiel:	"INST:SEL B	TDS "	'TD-SCDM	A BTS aktivieren
	"INIT:CONT	OFF"	'Single Sw	eep auswählen
	"CONF:CDP:M	EAS ESP"	'Messung S	Spektrum Emission
			'Mask ausv	vählen
	"CALC:LIM:E	SP:VALue 34"	'Aktiviert m	anuelle Auswahl der
			'Grenzwert	linie und wählt die für P≥34
	"INIT;*WAI"		'Messung r	nit Synchronisierung starten
	"CALC:LIM:F	AIL?"	'Ergebnis c	les Limitchecks abfragen
Eigenschaften:	*RST-Wert: SCPI:	0 gerätespezifisch		

:CALCulate:LIMit:ESPectrum:RESTore

Dieser Befehl restauriert die Standard-Grenzwertlinien für die Spectrum Emission Mask-Messung. Alle Änderungen, die an den Standard-Grenzwertlinien vorgenommen wurden, gehen dadurch verloren und der Auslieferungsstand dieser Grenzwertlinien wird wieder hergestellt.

Beispiel:	"INST BTDS	5"	'schaltet das Gerät in den TD-SCDMA BTS 'Modus
	"CALC:LIM:ESP:REST"		'setzt die Spectrum Emission Mask-Grenzwertlinien 'in die Grundeinstellung zurück
Eigenschaften:	*RST-Wert: SCPI:	 gerätespezifi	sch

Dieser Befehl ist ein Event und besitzt daher weder Abfrage noch *RST-Wert.

:CALCulate:LIMit:ESPectrum:CHECk:X? :CALCulate:LIMit:ESPectrum:CHECk:Y?

Diese Befehle geben den X-, bzw. den Y-Wert der größten Verletzung der Spectrum Emission Mask zurück.

 Beispiel:
 "INST BTDS"
 'schaltet das Gerät in den TD-SCDMA BTS 'Modus

 "CALC:LIM:ESP: CHEC:X"
 'gibt die Frequenz an der Stelle der größten 'Verletzung zurück.

 Eigenschaften:
 *RST-Wert: --SCPI:
 -gerätespezifisch

CALCulate:MARKer – Subsystem

BEFEHL	PARAMETER	EINHEIT	KOMMENTAR
CALCulate<1 2> :MARKer<14> :FUNCtion :CDPower [:BTS] :RESult?	SLOT PDATa PD1 PD2 PMIDamble RHO MACCuracy PCDerror FERRor CERRor TFRame I IQOFfset IQIMbalance ACTive SRATe CHANnel SFACtor CDPabsolute CDPRelative EVMRms EVMPeak		nur Abfrage

:CALCulate<1|2>:MARKer<1>:FUNCtion:CDPower[:BTS]:RESult?

SLOT | PDATa | PD1 | PD2 | PMIDamble | RHO | MACCuracy | PCDerror | FERRor | CERRor | TFRame I IQOFfset | IQIMbalance | ACTive | SRATe | CHANnel | SFACtor | CDPabsolute | CDPRelative | EVMRms | EVMPeak

Dieser Befehl fragt die gemessenen und die berechneten Werte der Code-Domain-Power-Analyse ab. Die Kanalergebnisse erfolgen für den Kanal, zu dem der über den Befehl CDPower:CODe ausgewählten Code gehört.

Parameter:

Globale Ergebnisse des gewählten Slots:

SLOT PDATa PD1 PD2 PMIDamble RHO MACCuracy PCDerror	Slot Nummer Leistung Daten Leistung Daten Leistung Midan RHO Composite EVM Peak Code Dor	FERR CERF TFRa IQIMb IQOF1 ACTiv	cor Ror me balance fset re	Frequenzfehler in Hz Chip Rate Error in ppm Trigger to Frame IQ Imbalance in % IQ Offset in % Anzahl aktiver Kanäle	
Kanalergebnisse: SRATe CHANnel SFACtor CDPRelative EVMRms	Data Rate in kb Channel Numb Spreading-Fakt Channel Power Error Vector Ma	ops er tor des Kanals relativ in dB agnitude RMS in %	CDPa EVMF	bsolute Peak	Channel Power absolut in dBm Error Vector Mag. Peak in %
Beispiel:	<pre>"INST:SEL BTDS" "INIT:CONT OFF" "INIT;*WAI" "CALC:MARK:FUNC:CDP:RES? "CDP:SLOT 5" "CDP:CODE 11" "CALC:MARK:FUNC:CDP:RES?</pre>		PDAT" EVMR"	'TD-SC 'CDP re 'Result 'Single 'Messul 'Leistur 'Wählt S 'Code N 'EVM R 'IN Slot	DMA BTS aktivieren, implizit ist elativ im Screen A und Summary im Screen B aktiv Sweep auswählen ng mit Synchronisierung starten ng der Datenfelder auslesen Slot 5 aus Nummer 11 auswählen MS des Code mit Nummer 11 5 auslesen
Eigenschaften:	*RST-Wert: SCPI:	- gerätespezifisch			

CONFigure:CDPower Subsystem

Dieses Subsystem enthält die Befehle zur Auswahl und Konfiguration der Messungen in der TD-SCDMA Applikations-Firmware. Bei CONFigure ist nur das numerische Suffix 1 erlaubt. Weitere Einstellungen für die Code-Domain-Power Analyse sind bei dem Befehl :[SENSe]:CDPower zu finden. Weitere Einstellungen für die Spectrum Emission Mask-Messung sind bei dem Befehl CALCulate:LIMit:ESPectrum zu finden.

BEFEHL	PARAMETER	EINHEIT	KOMMENTAR
CONFigure			
:CDPower			
[:BTS]			Option FS-K76
:MEASurement	POWer ACLR ESPectrum OBANdwidth OBWidth PVTime CDPower CCDF		
:CTABle :ORDer [:STATe] :SELect :NAME :DATA	CODE MIDamble <boolean> <file_name> <file_name> <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>,</numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></numeric_value></file_name></file_name></boolean>		
:COMMent :COPY	 <string> <file_name></file_name></string>		
:CATalog? :PVTime			
:SPOInt :SFRames	<numeric_value> <numeric_value></numeric_value></numeric_value>		

CONFigure<1>:CDPower[:BTS]:MEASurement

POWer | ACLR | ESPectrum | OBANdwith | OBWidth | PVTime | CDPower

Dieser Befehl wählt die Messung der Applikation FS-K76, TD-SCDMA Basisstationstests, aus. Die vordefinierten Einstellungen der einzelnen Messungen sind im Kapitel 5 im Detail beschrieben.

Parameter:	POWer		Kanalleistungsmessung (Standard TD-SCDMA
			Forward) mit vordefinierten Einstellungen
	ACLR		Nachbarkanalleistungsmessungen (Standard TD-
			SCDMA Forward) mit vordefinierten Einstellungen
	ESPectrum		Überprüfung der Signalleistung (Spectrum Emission Mask)
	OBANdwith OI	BWidth	Messung der belegten Bandbreite
	PVTime		Messung der Leistung über der Zeit
	CDPower		Code-Domain-Analyzer-Messung
	CCDF		Signalstatistik-Messungen
Beispiel:	"INST:SEL BI	FDS "	'TD-SCDMA BTS aktivieren
	"INIT:CONT (OFF"	'Single Sweep auswählen
	"CONF:CDP:ME	EAS PO	W" 'Kanalleistungsmessung auswählen
	"INIT;*WAI"		'Messung mit Synchronisierung starten
Eigenschaft:	*RST-Wert:	CDPow	ver
	SCPI:	gerätes	pezifisch

:CONFigure<1>:CDPower[:BTS]:CTABle:ORDer CODE | MIDamble

Dieser Befehl wählt die Sortierung der Kanaltabelle in Code Order, bzw. in Midamble Order aus.

Eigenschaften:	*RST-Wert:	CODE
	SCPI:	gerätespezifisch

:CONFigure<1>:CDPower[:BTS]:CTABle[:STATe] ON | OFF

Dieser Befehl schaltet die Kanaltabelle ein bzw. aus. Das Einschalten hat zur Folge, dass die gemessene Kanaltabelle unter dem Namen "RECENT" abgespeichert und eingeschaltet wird. Nachdem die Kanaltabelle "RECENT" eingeschaltet ist, kann mit dem Befehl CONF:CDP:CTABle:SELect eine andere Kanaltabelle gewählt werden.

Hinweis: Es muss immer zuerst mit dem Befehl CONF:CDP:CTAB:STAT die Kanaltabelle "RECENT" eingeschaltet werden und danach mit dem Befehl CONF:CDP:CTAB:SELect die gewünschte Kanaltabelle gewählt werden.

Beispiel:	"INST:SEL BTDS"	'TD-SCDMA BTS aktivieren, implizit ist
		'CDP relativ im Screen A und
		'Result Summary im Screen B aktiv
	"INIT:CONT OFF"	'Single Sweep auswählen
	"INIT;*WAI"	'Messung mit Synchronisierung starten, damit
		'Kanaltabelle eingeschaltet werden kann
	"CONF:CDP:CTAB ON"	Vordefinierte Kanaltabelle verwenden
	"CONF:CDP:CTAB:SEL 'CTA	3_1 ' " 'Kanaltabelle auswählen
	"INIT;*WAI"	'Messung mit Synchronisierung starten
Beispiel:		
Eigenschaften:	*RST-Wert: OFF	

:CONFigure<1>:CDPower[:BTS]:CTABle:SELect <string>

SCPI:

Dieser Befehl wählt eine vordefinierte Kanaltabellen-Datei aus. Vor diesem Befehl muss zuerst die Kanaltabelle "RECENT" mit dem Kommando CONF:CDP:CTAB ON eingeschaltet worden sein.

gerätespezifisch

Beispiel:	"INST:SEL B	TDS "	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv	
	"INIT:CONT	OFF "	'Single Sweep auswählen	
	"INIT;*WAI"		'Messung mit Synchronisierung starten, damit ' Kanaltabelle eingeschaltet werden kann	
	"CONF:CDP:C	TAB ON"	Vordefinierte Kanaltabelle verwenden	
	"CONF:CDP:C "INIT;*WAI"	TAB:SEL 'CTAB_1'"	'Kanaltabelle auswählen 'Messung mit Synchronisierung starten	
Eigenschaften:	*RST-Wert: SCPI:	"RECENT" gerätespezifisch		

:CONFigure:CDPower[:BTS]:CTABle:NAME <file_name>

Dieser Befehl wählt eine Kanaltabelle zum Editieren oder Anlegen aus. Sie wird dadurch nicht zur Analyse verwendet! Siehe dazu den Befehl CONF:CDP:CTAB:STAT und CONF:CDP:CTAB:SEL.

Beispiel:	"INST:SEL B "CONF:CDP:C	TDS " TAB : NAME	'NEW_TAB'"	'TD-SCDMA BTS aktivieren 'Tabelle zum Bearbeiten wählen
Eigenschaften:	*RST-Wert: SCPI:	"" gerätespez	zifisch	

:CONFigure:CDPower[:BTS]:CTABle:COMMent <string>

Dieser Befehl definiert einen Kommentar zur ausgewählten Kanaltabelle. Vor diesem Befehl muss der Namen der Kanaltabelle mit dem Befehl CONF:CDP:CTAB:NAME eingestellt und über CONF:CDP:CTAB:DATA eine gültige Kanaltabelle eingegeben worden sein.

Beispiel:	"INST:SEL E	TDS "	'TD-SCDMA BTS aktivieren
	"CONF:CDP:C	TAB:NAME	'NEW_TAB'" 'Tabelle zum Bearbeiten wählen
	"CONF:CDP:C	TAB:COMM	'Comment for NEW_TAB'"
Eigenschaften:	*RST-Wert: SCPI:	"" gerätespez	zifisch

:CONFigure:CDPower[:BTS]:CTABle:MSHift 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16

Dieser Befehl gibt die maximale Anzahl von Midamble Shifts in der Kanaltabelle an.

Beispiel:	"INST:SEL B'	IDS"	'TD-SCDMA BTS aktivieren
	"CONF:CDP:C'	TAB:NAME 'NEW_TAB'"	'Tabelle zum Bearbeiten wählen
	"CONF:CDP:C'	TAB:MSHift 14"	'14 Midamble Shifts zulassen
Eigenschaften:	*RST-Wert: SCPI:	16 gerätespezifisch	

:CONFigure:CDPower[:BTS]:CTABle:DATA 1..6, 0..4, 1..16, 0..2, 1..16, 0 | 1, 0, 0...

Dieser Befehl definiert eine Kanaltabelle. Es wird die gesamte Tabelle auf einmal definiert. Die inaktiven Kanäle (INACtive) müssen nicht definiert werden. Zu einer Tabellenzeile werden 8 Werte angegeben.

< Channel Typ >, <Code Klasse>, <Code Nummer>, <Modulation Type>, <Midamble Shift>, <Status>, <reserviert1>, <reserviert2>,

Channel Typ:	der 1 2 3 4 5 6 7	Kanaltyp ist v = Midam = DPCH = P-CCP = S-CCP = FPACH = PDSCH	wie folgt mit Za ble PCH PCH H H	hlen codiert:
Code Klasse:	04			
Code Nummer:	11	6		
Modulation Type:	0 =	invalid (bei N	lidamble)	
	1 = 0	QPSK		
	2 =	8PSK		
Midamble Shift:	11	6		
Status:	0: in	aktive, 1:akti	ve kommende vor	
	Kani	n Dei Einsteili	kommanuo ver	wendet werden um vorubergenend
reserviert1.	imm	er 0 reservie	ert für Erweiter	ungen
reserviert2:	imm	ier 0. reservie	ert für Erweiter	ungen
Vor diesem Befehlm werden.	nuss der Namen	der Kanaltabe	elle mit dem Befe	hl CONF : CDP : CTAB : NAME eingestellt
Beispiel:	"INST:SEL	BTDS "		'TD-SCDMA BTS aktivieren
•	"CONF:CDP:	CTAB:NAME	'NEW TAB'"	'Tabelle zum Bearbeiten wählen
	"CONF:CDP:	CTAB:DATA	2,4,1,1,1,	1,0,0,
			2,4,2,1,1,	1,0,0"
				'Definiert 2 Datenkanäle mit QPSK- 'Modulation
Eigenschaften:	*RST-Wert:	-		
-	SCPI:	gerätespezit	fisch	

:CONFigure:CDPower[:BTS]:CTABle:COPY <file_name>

Dieser Befehl kopiert eine Kanaltabelle auf eine andere. Die zu kopierende Kanaltabelle wird durch den Befehl CONF: CDP: CTAB: NAME gewählt.

Parameter:	<file_name> ::=</file_name>	Name der neuen Kanalta	abelle
Beispiel:	"INST:SEL B "CONF:CDP:C" "CONF:CDP:C	TDS" TAB:NAME 'CTAB_1'" TAB:COPY 'CTAB_2'"	'TD-SCDMA BTS aktivieren 'Tabelle zum Bearbeiten wählen 'Kopiert CTAB_1 auf C_TAB2
Eigenschaften:	*RST-Wert: SCPI:	 gerätespezifisch	

Der Name der Kanaltabelle darf aus max. 8 Zeichen bestehen. Dieser Befehl ist ein "Event" und hat daher keinen *RST-Wert und keine Abfrage.

:CONFigure:CDPower[:BTS]:CTABle:DELete

Dieser Befehl löscht die ausgewählte Kanaltabelle. Die zu löschende Kanaltabelle wird durch den Befehl CONF:C2KP:CTAB:NAME gewählt.

Beispiel:	"INST:SEL E	BTDS"	'TD-SCDMA BTS aktivieren
	"CONF:CDP:(CTAB:NAME 'CTAB_2'"	'Tabelle zum Bearbeiten wählen
	"CONF:CDP:(CTAB:DEL"	'Löscht CTAB_2
Eigenschaften:	*RST-Wert: SCPI:	 gerätespezifisch	

Dieser Befehl ist ein "Event" und hat daher keinen *RST-Wert und keine Abfrage.

:CONFigure:CDPower[:BTS]:CTABle:CATalog?

Dieser Befehl fragt die Namen aller auf der Festplatte gespeicherten Kanaltabellen für TD-SCDMA BTS ab.

Die Syntax des Ausgabeformates ist wie folgt:

<Summe der Dateilängen aller nachfolgenden Dateien>,<freier Speicherplatz auf Festplatte>, <1. Dateiname>,<1. Dateilänge>,<2. Dateiname>,,<2. Dateilänge>,...,<n. Dateiname>,, <n. Dateilänge>,...

Beispiel:	"INST:SEL BTDS" "CONF:CDP:CTAB:CAT?"		'TD-SCDMA BTS aktivieren 'Catalog abfragen
Eigenschaften:	*RST-Wert: SCPI:	 gerätespezifisch	

:CONFigure:CDPower[:BTS]:PVTime:SPOint 1...7

Dieser Befehl stellt den Switching-Point zwischen Uplink-Slots und Downlink-Slots ein .

Beispiel:	"INST:SEL BTDS"	'TD-SCDMA BTS aktivieren
	"CONF:CDP:MEAS PVT"	'Power Vs Time auswählen
	"CONF:CDP:PVT:SPO 6"	'Switching Point einstellen

Eigenschaften:	*RST-Wert:	3
	SCPI:	gerätespezifisch

FS-K76

:CONFigure:CDPower[:BTS]:PVTime:SFRames

Dieser Befehl stellt die Anzahl der aufzuzeichnenden Subframes für die Mittelungsfunktionen ein .

Beispiel:	"INST:SEL BTDS"	'TD-SCDMA BTS aktivieren
	"CONF:CDP:MEAS PVT"	'Power Vs Time auswählen
	"CONF:CDP:PVT:SFR 50"	'Number of Subframes einstellen

Eigenschaften:	*RST-Wert:	100
-	SCPI:	gerätespezifisch

Fernbedienbefehle

INSTrument Subsystem

Das INSTrument-Subsystem wählt die Betriebsart des Gerätes entweder über Textparametern oder über fest zugeordnete Zahlen aus.

BEFEHL	PARAMETER	EINHEIT	KOMMENTAR
INSTrument			
[:SELect]	SANalyzer BTDScdma		
:NSELect	<numeric_value></numeric_value>		

:INSTrument[:SELect] SANalyzer | BTDScdma

Dieser Befehl schaltet zwischen den Betriebsarten über Textparameter um.

Die Auswahl TD-SCDMA BTS (BTDS) setzt das Gerät in einen definierten Zustand. Die Preset-Werte sind in Kapitel 2, Abschnitt "Grundeinstellungen in der Betriebsart " beschrieben.

Beispiel:	"INST BTDS"	'TD-SCDMA BTS aktivieren
Eigenschaften:	*RST-Wert:	SANalyzer
	SCPI:	konform

Die Umschaltung auf BTDS setzt die Option TD-SCDMA FWD (BTS) R&S FS-K76 voraus

:INSTrument:NSELect 1 | 17

Dieser Befehl schaltet zwischen den Betriebsarten über Zahlen um.

Parameter:	1:	Betrie	bsart Spektrumanalyse	
	17:	Betrie	ebsart TD-SCDMA FWD (E	BTS)
Beispiel:	"INST:N	ISEL I	17"	'TD-SCDMA BTS aktivieren.
Eigenschaften:	*RST-We SCPI:	ert:	1 konform	

Die Umschaltung auf 17 setzt die Option TD-SCDMA FWD (BTS) R&S FS-K76 voraus.

SENSe:Power Subsystem

Zusätzlich zu den im Grundgerät verfügbaren Einstellungen können hiermit die automatischen Einstellungen für den Pegel und den Zeitbezug gestartet und der Erfolg abgefragt werden. Das numerische Suffix bei SENSe<1|2> ist ohne Bedeutung für dieses Subsystem.

BEFEHL	PARAMETER	EINHEIT	KOMMENTAR
[SENSe<1 2>]			
:Power			
:ACHannel			
:AUTO			
:LTIMe			
:LTIMe?			Abfrage
:SLOT:STARt			
:SLOT:STOP			
:PRESet			
:RLEVel			
:RLEVel?			Abfrage

[SENSe<1|2>:]POWer:ACHannel:AUTO:LTIMe

Dieser Befehl bewirkt eine automatische Einstellung des Referenz-Levels und stellt den Bezug zwischen Triggersignal und Frame Start her.

Hinweis: Nachfolgende Befehle müssen mit *WAI, *OPC oder *OPC? auf das Ende des Autorange-Vorgangs synchronisiert werden, da ansonsten der Autorange-Vorgang abgebrochen wird.

Beispiel: ": POW: ACH: AUTO: LTIM; *WAI" 'führt automatische Pegeleinstellung durch

Eigenschaften: *RST-Wert:

SCPI: gerätespezifisch

[SENSe<1|2>:]POWer:ACHannel:AUTO:LTIMe?

Dieser Befehl übergibt **PASSED**,<trigger to Frame in Sekunden>,0.000 bei erfolgreicher Pegeleinstellung, oder FAILED,0.000,0.000 ,wenn keine optimalen Einstellungen gefunden wurden.

Die abschließende Null bei PASSED ist eine Reservierung für zukünftige Erweiterungen.

Beispiel: ": POW: ACH: AUTO: LTIM? " 'liefert PASSED, 8.002e-004, 0.000

Eigenschaften: *RST-Wert: -SCPI: gerätespezifisch

[SENSe<1|2>:]POWer:ACHannel:SLOT:STARt 1 ... 7

Dieser Befehl definiert den Start-Slot für den gated Sweep.

Beispiel: ":POW:ACH:SLOT:STAR 3" 'setzt Start-Slot für gated Sweep auf 3

Eigenschaften: *RST-Wert: 4 SCPI: gerätespezifisch

[SENSe<1|2>:]POWer:ACHannel:SLOT:STOP 1 ... 7

Dieser Befehl definiert den Stop-Slot für den gated Sweep.

Beispiel: ":POW:ACH:SLOT:STOP 4" 'setzt Stop-Slot für gated Sweep auf 4

Eigenschaften: *RST-Wert: 6

SCPI: gerätespezifisch

[SENSe<1|2>:]POWer:ACHannel:PRESet:RLEVel

Dieser Befehl passt den Referenzpegel an die gemessene Kanalleistung an.

Hinweis: Nachfolgende Befehle müssen mit *WAI, *OPC oder *OPC? auf das Ende des Autorange-Vorgangs synchronisiert werden, da ansonsten der Autorange-Vorgang abgebrochen wird.

Beispiel: ": POW: ACH: PRES: RLEV; *WAI" 'passt den Referenzpegel an die gemessene 'Kanalleistung an.

Eigenschaften: *RST-Wert: -SCPI: gerätespezifisch

[SENSe<1|2>:]POWer:ACHannel:PRESet:RLEVel?

Dieser Befehl übergibt **PASSED** bei erfolgreicher Pegeleinstellung oder **FAILED**, wenn keine optimalen Einstellungen gefunden wurden.

 Beispiel:
 ":POW:ACH:PRES:RLEV?"
 'liefert PASSED oder FAILED

 Eigenschaften:
 *RST-Wert:

 SCPI:
 gerätespezifisch

SENSe:CDPower Subsystem

Dieses Subsystem stellt die Parameter für die Betriebsart Code-Domain-Messungen ein. Das numerische Suffix bei SENSe<1|2> ist ohne Bedeutung für dieses Subsystem.

BEFEHL	PARAMETER	EINHEIT	KOMMENTAR
[SENSe<1 2>]			
:CDPower			
:STANdard	GPP TSM		
:SCODe	<numeric_value></numeric_value>		
:MSHift	<numeric_value></numeric_value>		
:IQLength	<numeric_value></numeric_value>		
:ICTReshold	<numeric_value></numeric_value>	DB	
:QINVert	ON OFF		
:SBANd	NORMal INVerse		
:NORMalize	ON OFF		
:LEVel			
:ADJust			
:CODE	<numeric_value></numeric_value>		
:SLOT	<numeric_value></numeric_value>		

:[SENSe:]CDPower:STANdard GPP | TSM

Dieser Befehl schaltet zwischen den Normen 3GPP und TSM um . Die Umschaltung betrifft zur Zeit nur die Spectrum Emission Mask.

Beispiel:	"INST:SEL	BTDS "	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
	"INIT:CONT OFF" "CDP:STAN TSM"		'Single Sweep auswählen 'TSM-Mode einstellen
	"INIT;*WAI	II	'Messung mit Synchronisierung starten
Eigenschaften:	*RST-Wert: SCPI:	GPP gerätespezifisch	

:[SENSe:]CDPower:SCODe 0...127

Dieser Befehl stellt den Scrambling Code der Basisstation ein.

Beispiel:	"INST:SEL BTDS" "INIT:CONT OFF" "CDP:SCOD 42" "INIT;*WAI"		'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
			'Single Sweep auswählen
			'Scrambling Code einstellen
			'Messung mit Synchronisierung starten
Eigenschaften:	*RST-Wert: SCPI:	0 gerätespezifisch	

:[SENSe:]CDPower:MSHift 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16

Dieser Befehl gibt die maximale Anzahl von Midamble Shifts an.

Beispiel:	"INST:SEL BTDS" "CDP:MSH 10"		'TD-SCDMA BTS aktivieren 'Maximaler Midamble Shift von 10
Eigenschaften:	*RST-Wert: SCPI:	16 gerätespezifisch	

:[SENSe:]CDPower:IQLength 2...63

Dieser Befehl stellt die Aufzeichnungslänge (IQ-Capture-Length) in Vielfachen von Slots ein. Der Wertebereich ist von 2 bis 63.

Beispiel:	"INST:SEL BTDS" "INIT:CONT OFF" "CDP:IQL 8"		'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv	
			'Single Sweep auswählen	
			'8 Slots Aufzeichnungslänge	
	"INIT;*WAI"		'Messung mit Synchronisierung starten	
Eigenschaften:	*RST-Wert: SCPI:	7 gerätespezifisch		

:[SENSe:]CDPower:ICTReshold -100 dB ...0 dB

Dieser Befehl stellt den Schwellwert ein, ab dem ein Kanal als aktiv betrachtet wird. Der Pegel bezieht sich auf die Signalgesamtleistung.

Beispiel: "INST:SEL BTDS" "INIT:CONT OFF"		BTDS "	'TD-SCDMA BTS aktivieren, implizit is 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
		OFF "	'Single Sweep auswählen
	"CDP:ICTR -10DB" "INIT;*WAI"		'Schwellwert auf -10dB
			'Messung mit Synchronisierung starten
Eigenschaften:	*RST-Wert: SCPI:	-40dB gerätespezifisch	

:[SENSe:]CDPower:QINVert ON | OFF

Dieser Befehl invertiert das Vorzeichen des Q-Anteils des Signals.

Beispiel:	"INST:SEL	BTDS "	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
	"INIT:CONT "CDP:QINV	OFF" ON"	'Single Sweep auswählen 'Invertieren Q-Anteil einschalten 'Messung mit Synchroniciorung starten
Eigenschaften:	*RST-Wert: SCPI:	OFF gerätespezifisch	Messung mit Synchronisierung starten

:[SENSe:]CDPower:SBANd NORMal | INVers

Dieser Befehl dient zum Vertauschen des linken bzw. rechten Seitenbandes.

Beispiel:	"INST:SEL	BTDS "	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
"INIT:CONT OF		OFF" TNV"	'Single Sweep auswählen 'Vertauschen der Seitenbänder 'Messung mit Synchronisierung starter
	"INIT; *WAI"		
Eigenschaften:	*RST-Wert: SCPI:	NORM gerätespezifisch	

:[SENSe:]CDPower:NORMalize ON | OFF

Dieser Befehl schaltet die Eliminierung des IQ-Offset ein bzw. aus.

Beispiel:	"INST:SEL E	BTDS "	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
"INIT:CONT OFF" "CDP:NORM OFF"		OFF")FF"	'Single Sweep auswählen 'Eliminierung des IQ-Offsets aus
	"INIT;*WAI'	1	'Messung mit Synchronisierung starten
Eigenschaften:	*RST-Wert: SCPI:	OFF gerätespezifisch	

:[SENSe:]CDPower:LEVel:ADJust

Dieser Befehl bewirkt eine automatische Einstellung der HF-Dämpfung und ZF-Verstärkung auf den Pegel des angelegten Signals. Um HF-Dämpfung und ZF-Verstärkung unabhängig voneinander auf optimale Werte einzustellen wird das Gerät in den Modus ATTEN MANUAL versetzt. Dieser Modus bleibt auch nach Wechsel von der Betriebsart TD-SCDMA BTS zu der Betriebsart SPECTRUM erhalten.

Beispiel:	"INST:SEL BTDS"	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
	"INIT:CONT OFF" "CDP:LEV:ADJ" "INIT;*WAI"	'Single Sweep auswählen 'automatische Pegeleinstellung starten 'Messung mit Synchronisierung starten
Eigenschaften:	*RST-Wert: -	

Ε SCPI:

gerätespezifisch

Dieser Befehl ist ein "Event" und hat daher keinen *RST-Wert und keine Abfrage.

:[SENSe<1|2>:]CDPower:CODE 1..16

Dieser Befehl wählt die Code-Nummer aus.

Beispiel:	"INST:SEL BTDS"		'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
	"INIT:CONT "CDP:CODE 1 "INIT;*WAI"	OFF" L1"	'Single Sweep auswählen 'Code Nummer 11 auswählen 'Messung mit Synchronisierung starten
Eigenschaften:	*RST-Wert: SCPI:	0 gerätespezifisch	

:[SENSe:]CDPower:SLOT 0 ... IQLength-1

Dieser Befehl wählt den Slot aus.

Beispiel: "INST:SEL BTDS"		BTDS "	'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv	
	"INIT:CONT	OFF "	'Single Sweep auswählen	
	"CDP:SLOT 4"		'Wählt Slot 4 aus	
	"INIT;*WAI'	п	'Messung mit Synchronisierung starten	
Eigenschaften:	*RST-Wert: SCPI:	0 gerätespezifisch		

TRACe Subsystem

:TRACe[:DATA] TRACE1 | TRACE2

Dieser Befehl transferiert Trace-Daten vom Controller zum Gerät, das Abfragekommando liest Trace-Daten aus dem Gerät aus.

Es kann TRACE1, TRACE2 ausgelesen werden, abhängig von der Darstellung.

Die Trace-Daten (TRACE1 | TRACE2) sind bei den unterschiedlichen Darstellungen folgendermaßen formatiert:

CODE DOMAIN POWER ABSOLUT/CODE DOMAIN POWER RELATIV (TRACE1):

Für jeden Kanal wird folgendes ausgegeben:			
Code Klasse	Code Klasse des Kanals, Werte zwischen 04		
Code Nummer	Code Nummer des Kanals, Werte zwischen 116		
Pegel	 bei CODE DOMAIN POWER ABSOLUT in der Einheit dBm bei CODE DOMAIN POWER RELATIV in der Einheit dB 		
Leistungskennung	0 - inaktiver Kanal 1 - aktiver Kanal		

Für alle Kanäle werden somit 4 Werte übertragen: <Code Klasse>, <Code Nummer>, <Pegel>, <Leistungskennung>, ...

Es werden maximal 16 Kanäle ausgegeben, zusammengehörende Kanäle werden als ein Kanal ausgegeben.

Beispiel:

Das Beispiel zeigt die Ergebnisse der Abfrage für 3 aktive Kanäle mit folgender Konfiguration:

DPCH DPCH DPCH	1.16 2.8 3.4	(CC 4) (CC 3) (CC 2)	-7.0 dB -7.3 dB -8.0 dB
"INST:S	EL BTDS"		'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
"INIT:C	CONT OFF"		'Single Sweep auswählen
"INIT;*	WAI"		'Messung mit Synchronisierung starten
"TRAC?	TRACE1"		'CDP relativ auslesen
4, 1, 4, 2, 3, 2, 4, 5, 4, 6, 4, 7, 4, 8, 2, 3, 4, 13, 4, 14, 4, 15, 4, 16,	-7.0, 1, -55.1, 0, -7.3, 1, -56.3, 0, -55.8, 0, -57.0, 0, -56.7, 0, -8.0, 1, -55.8, 0, -56.3, 0, -55.9, 0, -57.3, 0		

CODE DOMAIN ERROR POWER (TRACE1):

Für jeden Kanal wird folg	gendes ausgegeben:
Code Klasse	Code Klasse des Kanals, Werte zwischen 04
Code Nummer	Code Nummer des Kanals, Werte zwischen 116
Fehlerleistung	in der Einheit dB
Leistungskennung	0 - inaktiver Kanal
	1 - aktiver Kanal

Für alle Kanäle werden somit 4 Werte übertragen: <Code Klasse>, <Code Nummer>, <Pegel>, <Leistungskennung>, ...

Weil bei der Code Domain Error Power eine Fehlerleistung ausgegeben wird, ist eine Konsolidierung der Leistungswerte nicht sinnvoll. Die Anzahl der ausgegebenen Codes entspricht deshalb generell dem Spreading-Faktor 16.

Beispiel:

Das Beispiel zeigt die Ergebnisse der Abfrage für 3 aktive Kanäle mit folgender Konfiguration:

DPCH	1.16	(CC 4)	-7.0 dB
DPCH	2.8	(CC 3)	-7.3 dB
DPCH	3.4	(CC 2)	-8.0 dB
"INST:	SEL BTDS"		'TD-SCDMA BTS aktivieren, implizit ist 'CDP relativ im Screen A und 'Result Summary im Screen B aktiv
"INIT:	CONT OFF"		'Single Sweep auswählen
"CALC2:FEED `XTIM:CDEP'"			'Code Domain Error Power Auswertung
"INIT;	*WAI"		'Messung mit Synchronisierung starten
"TRAC?	TRACE1"		'CDP relativ auslesen
4, 1, 4, 2, 4, 3,	-54.5, 1, -55.1, 0, -56.3, 1,		

4,	Ζ,	-55.1,	υ,
4,	3,	-56.3,	1,
4,	4,	-56.2,	1,
4,	5,	-56.3,	Ο,
4,	б,	-55.8,	Ο,
4,	7,	-57.0,	Ο,
4,	8,	-56.7,	Ο,
4,	9,	-56.2,	1,
4,	10,	-56.5,	1,
4,	11,	-55.8,	1,
4,	12,	-55.9,	1,
4,	13,	-55.8,	Ο,
4,	14,	-56.3,	Ο,
4,	15,	-55.9,	Ο,
4,	16,	-57.3,	0

CHANNEL TABLE (TRACE1):

Für jeden Kanal wird folgeno	des ausgegeben:
Channel Typ	der Kanaltyp ist wie folgt mit Zahlen codiert: 0 = INACTIVE 1 = Midamble 2 = DPCH 3 = P-CCPCH 4 = S-CCPCH 5 = FPACH 6 = PDSCH 7 = PICH
Code Klasse	Code Klasse des Kanals, Werte zwischen 04
Code Nummer	Code Nummer des Kanals, Werte zwischen 116
Modulation Type	Modulationsart des Kanals 0 = invalid (bei Midamble) 1 = QPSK 2 = 8PSK
absoluter Pegel	in der Einheit dBm
relativer Pegel	in der Einheit dB
Midamble Shift	Werte zwischen 116
∆MidD1	Power Offset zwischen der Summenleistung der Kanäle (die zu der Midamble(k) gehören, nur Datenfeld 1) und der Midamble(k) Leistung
∆MidD2	Power Offset zwischen der Summenleistung der Kanäle (die zu der Midamble(k) gehören, nur Datenfeld 2) und der Midamble(k) Leistung
reserviert1	Reserviert für Erweiterungen
reserviert2	Reserviert für Erweiterungen

Die Klasse gibt dabei den Spreading-Faktor des Kanals an: Klasse 4 entspricht dem höchsten Spreading-Faktor (16, Datenrate 17.6 kbps bei QPSK, Datenrate 26,4 kbps bei 8PSK), Klasse 0 dem niedrigsten Spreading-Faktor (1, Datenrate 281.6 kbps bei QPSK, Datenrate 422,4 kbps bei 8PSK).

Für alle Kanäle werden somit 11 Werte übertragen: <Channel Typ>, <Code Klasse>, <Code Nummer>, <Modulation Type>, <absoluter Pegel in dBm>, <relativer Pegel dB>, <Midamble Shift>, <ΔMidD1>, <ΔMidD2>, <reserviert1>, <reserviert2>,...

Bei Code-Sortierung (CONF:CDP:CTAB:ORD CODE) werden zuerst alle Midambles, dann die Steuerkanäle und zuletzt die Datenkanäle mit aufsteigender Code Nummer ausgegeben.

Bei Midamble-Sortierung (CONF:CDP:CTAB:ORD MID) wird immer zuerst die Midamble und dann die zu dieser Midamble gehörenden Steuer- und Datenkanäle ausgegeben.

Beispiel:

Das Beispiel zeigt die Ergebnisse der Abfrage für 3 Kanäle in Common Midamble Allocation mit folgender Konfiguration:

Midamb	le m(3)	-3.0 d	Bm	
DPCH	1.16	QPSK	-7.78	dBm
DPCH	2.8	QPSK	-7.78	dBm
DPCH	3.4	8PSK	-7.78	dBm
"INST:	SEL BTDS"	'TD-SCDN 'CDP rela	MA BTS aktivier tiv im Screen A	ren, implizit ist und
" TNTT				
	JONI OFF"	Single SV	veep auswanie	I
"CALC2	:FEED `XTIM:	CDP:ERR:	CTAB′"	
		'Kanaltabe	ellen Auswertur	ng

"INIT;*WAI"	'Messung mit Synchronisierung starten
"TRAC? TRACE1"	'Kanaltabelle auslesen
1, 0, 0, 0, -3.0,	0, 3, 0.005, 0.005, 0, 0
2 , 4 , 1 , 1 , -7.78	, -4.78, 3, 0, 0, 0, 0
2 , 3, 2, 1, -7.78	, -4.78, 3, 0, 0, 0, 0
2 , 2, 3, 2, -7.78	, -4.78, 3, 0, 0, 0, 0
0 , 4 , 2 , 1 , -46.9	, -43.9, 3, 0, 0, 0, 0
0 , 4 , 5 , 1 , -46.9	, -43.9, 3, 0, 0, 0, 0
0 , 4 , 6 , 1 , -46.9	, -43.9, 3, 0, 0, 0, 0
0 , 4 , 7 , 1 , -46.9	, -43.9, 3, 0, 0, 0, 0
0 , 4 , 8 , 1 , -46.9	, -43.9, 3, 0, 0, 0, 0
0 , 4 , 13 , 1 , -46.	9, -43.9, 3, 0, 0, 0, 0
0 , 4, 14, 1, -46.	9, -43.9, 3, 0, 0, 0, 0
0 , 4, 15, 1, -46.	9, -43.9, 3, 0, 0, 0, 0
0, 4, 16, 1, -46.	9, -43.9, 3, 0, 0, 0, 0

RESULT SUMMARY (TRACE2):

Dieser Befehl fragt die gemessenen und die berechneten Werte der Code-Domain-Power-Analyse ab. Die Kanalergebnisse erfolgen für den Kanal, zu dem der über den Befehl CDPower:CODe ausgewählten Code gehört.

Parameter:

Globale Ergebnisse des gewählten Slots:

SLOT	Slot Nummer		
PDATa	Leistung Datenfelder in dBm	FERRor	Frequenzfehler in Hz
PD1	Leistung Datenfeld 1 in dBm	CERRor	Chip Rate Error in ppm
PD2	Leistung Datenfeld 2 in dBm	TFRame	Trigger to Frame
PMIDamble	Leistung Midamble in dBm	IQIMbalance	IQ Imbalance in %
RHO	RHO	IQOFfset	IQ Offset in %
MACCuracy	Composite EVM in %	ACTive	Anzahl aktiver Kanäle
PCDerror	Peak Code Domain Error in dB		

Kanalergebnisse:

SRATe	Data Rate in kbps
CHANnel	Channel Number
SFACtor	Spreading-Faktor des Kanals
CDPRelative	Channel Power relativ in dB
CDPabsolute	Channel Power absolut in dBm
EVMRms	Error Vector Magnitude RMS in %
EVMPeak	Error Vector Mag. Peak in %

Die Ergebnisse der RESULT SUMMARY werden in folgender Reihenfolge ausgegeben: <SLOT>, <PDATa>, <PD1>, <PD2>, <PMIDamble>, <RHO>, <MACCuracy>, <PCDerror>, <FERRor>, <CERRor>, <TFRame>, <IQIMbalance>, <IQOFfset>, <ACTive>, <SRATe>, <CHANnel>, <SFACtor>, <CDPRelative>, <CDPabsolute>, <EVMRms>, <EVMPeak>,<reserviert 1>,<reserviert 2>,<reserviert 3>,<reserviert 4>

Hierbei haben die Ergebnisse folgende Bedeutung und Einheit:

Globale Ergebnisse des gewählten Slots:

SLOT	Slot Nummer		
PDATa	Leistung Datenfelder in dBm	FERRor	Frequenzfehler in Hz
PD1	Leistung Datenfeld 1 in dBm	CERRor	Chip Rate Error in ppm
PD2	Leistung Datenfeld 2 in dBm	TFRame	Trigger to Frame
PMIDamble	Leistung Midamble in dBm	IQIMbalance	IQ Imbalance in %
RHO	RHO	IQOFfset	IQ Offset in %
MACCuracy	Composite EVM in %	ACTive	Anzahl aktiver Kanäle
PCDerror	Peak Code Domain Error in dB		

in dBm

	Kanalergebni SRATe CHANnel SFACtor CDPRelative EVMRms	sse: Data Rate in Channel Num Spreading-Fa Channel Pow Err. Vec. Mag	kbps iber iktor des Kana er relativ in dE g. RMS in %	lls 3	CDPabsolute EVMPeak	Channel F Err. Vec. I	²ower absolut in ⁄lag. in %
	<u>Hinweis:</u> Der Wert Trig	iger to Frame (TFRame) li efe i	rt eine	e '9', falls der Tri	igger auf Fl	REE RUN steht.
POV	VER VS Slot a	abs/rel (TRACE	<u>=2):</u>				
	Die Anzahl de (Siehe Befehl	er zurückgegel CDPower:IQ	Denen Wertetri Length, W e r	ipel e teber	ntspricht der IQ- eich 263).	Capture-Le	ength.
	Power vs Slot Power vs Slot	t abs: <slotnur t rel: <slotnum< td=""><td>nmer>,<pegel mer>,<pegelw< td=""><td>wert i vert ir</td><td>n dBm>,<gültig dB>,<gültigkei< td=""><td>keit>,; t>,;</td><td></td></gültigkei<></gültig </td></pegelw<></pegel </td></slotnum<></slotnur 	nmer>, <pegel mer>,<pegelw< td=""><td>wert i vert ir</td><td>n dBm>,<gültig dB>,<gültigkei< td=""><td>keit>,; t>,;</td><td></td></gültigkei<></gültig </td></pegelw<></pegel 	wert i vert ir	n dBm>, <gültig dB>,<gültigkei< td=""><td>keit>,; t>,;</td><td></td></gültigkei<></gültig 	keit>,; t>,;	
	Gültigkeit ist f	olgendermaße	en codiert:				
	0 = inaktiv 1 = aktiv 2 = alias	(Kanal nicht b (Kanal belegt (Code Klasse	oelegt)) : das Kanal < 4	1, d.h	. mehrere Kanäl	e gehören :	zusammen)
<u>PEA</u>		AIN ERR und	COMPOSITE	EVM	I (TRACE2):		
	Die Anzahl de (Siehe Befehl	er zurückgegel CDPower:IQ	benen Wertepa Length, Wer	aare e teber	entspricht der IC eich 263).	-Capture-L	ength.
	PEAK CODE COMPOSITE	DOMAIN ERF EVM: <slotnu< td=""><td>ROR: <slotnum Immer>, <wer< td=""><td>nmer≯ t in %</td><td>>, <pegelwert in<br="">>,;</pegelwert></td><td>dB>,;</td><td></td></wer<></slotnum </td></slotnu<>	ROR: <slotnum Immer>, <wer< td=""><td>nmer≯ t in %</td><td>>, <pegelwert in<br="">>,;</pegelwert></td><td>dB>,;</td><td></td></wer<></slotnum 	nmer≯ t in %	>, <pegelwert in<br="">>,;</pegelwert>	dB>,;	
SYN	IBOL EVM (TR	RACE2):					
	Die Anzahl de Spreading-Fa Spreading-Fa Spreading-Fa	er Werte ist ab Iktor 16: Iktor 4: Iktor 1:	hängig vom Sp 44 Werte; 176 Werte: 704 Werte;	oread Spr Spr	ing-Faktor: eading-Faktor 8 eading-Faktor 2	:	88 Werte 352 Werte
	<wert %="" in="" s<="" td=""><td>ymbol 0>, <we< td=""><td>ert in % Symbo</td><td>ol 1>,</td><td>;</td><td></td><td></td></we<></td></wert>	ymbol 0>, <we< td=""><td>ert in % Symbo</td><td>ol 1>,</td><td>;</td><td></td><td></td></we<>	ert in % Symbo	ol 1>,	;		
POV	VER VS SYM	BOL (TRACE2	<u>):</u>				
	Die Anzahl de Spreading-Fa Spreading-Fa Spreading-Fa	er Werte ist ab Iktor 16: Iktor 4: Iktor 1:	hängig vom Sp 44 Werte; 176 Werte: 704 Werte;	oread Spr Spr	ing-Faktor: eading-Faktor 8 eading-Faktor 2		88 Werte 352 Werte
	<wert dbm<="" in="" td=""><td>n Symbol 0>, <</td><td>Wert in dBm S</td><td>Symbo</td><td>ol 1>,;</td><td></td><td></td></wert>	n Symbol 0>, <	Wert in dBm S	Symbo	ol 1>,;		
SYN	BOL CONST	(TRACE2):					
	Die Anzahl de Spreading-Fa Spreading-Fa Spreading-Fa	er Wertepaare Iktor 16: Iktor 4: Iktor 1:	ist abhängig v 44 Werte; 176 Werte: 704 Werte;	om S Spre Spre	preading-Faktor eading-Faktor 8 eading-Faktor 2		88 Werte 352 Werte
	Es wird Real- <re 0="">,<im 0=""></im></re>	und Imaginärt >, <re 1="">,<im 1<="" td=""><td>eil als Wertepa >,<re n="">, <i< td=""><td>aar ül im n></td><td>bergeben.</td><td></td><td></td></i<></re></td></im></re>	eil als Wertepa >, <re n="">, <i< td=""><td>aar ül im n></td><td>bergeben.</td><td></td><td></td></i<></re>	aar ül im n>	bergeben.		
<u>COI</u>	MPOSITE COM	<u>NST (TRACe2)</u>	<u>):</u>				

Die Anzahl der Wertepaare entspricht der Chipanzahl von 704 Chips in den Datenbereichen eines Slots. Es wird Real- und Imaginärteil als Wertepaar übergeben.

<re Chip 0>, <im Chip 0>, <re Chip 1>, <im Chip 1>,....;

BITSTREAM (TRACE2):

Der Bitstream eines Kanals wird ausgegeben. Pro Bit wird ein Wert ausgegeben (Wertebereich 0,1), jedes Symbol besteht aus 2 Bits bei QPSK Kanälen und aus drei Bits bei 8PSK.

Die Anzahl der Werte ist abhängig vom Spreading-Faktor bei QPSK:

Spreading-Faktor 16: Spreading-Faktor 8: Spreading-Faktor 4:	88 Werte; 176 Werte: 352 Werte	Spreading-Faktor 2: Spreading-Faktor 1:	704 Werte 1408 Werte
Bei 8PSK: Spreading-Faktor 16: Spreading-Faktor 8: Spreading-Faktor 4:	132 Werte; 264 Werte: 528 Werte	Spreading-Faktor 2: Spreading-Faktor 1:	1056 Werte 2112 Werte

STATus-QUEStionable:SYNC-Register

Dieses Register enthält Informationen über die Fehlersituation in der Code-Domain-Power-Analyse der Option FS-K76.

Es kann mit den Befehlen "STATus:QUEStionable:SYNC:CONDition?" bzw. "STATus: QUEStionable:SYNC[:EVENt]?" abgefragt werden.

Bit-Nr.	Bedeutung
0	nicht verwendet in der Applikation FS-K76
1	K76 Frame Sync failed
	Dieses Bit ist gesetzt, wenn innerhalb der Applikation die Synchronisation nicht möglich ist. Ursachen hierfür können sein: falsch eingestellte Frequenz falsch eingestellter Pegel falsch eingestellter Scrambling Code falsch eingestellte Werte bei Q-INVERT oder SIDE BAND INVERT ungültiges Signal am Eingang
2 bis 14	nicht verwendet in der Applikation FS-K76
15	Dieses Bit ist immer 0.

Tabelle 6-1	Bedeutung der Bits im STATus:QUEstionable:SYNC	-Register
-------------	--	-----------

Tabelle der Softkeys mit Zuordnung der IEC-Bus-Befehle

Taste MEAS bzw. Hotkey MEAS

POWER	:CONFigure<1>:CDPower:MEASurement POWer
	Ergebnisabfrage :CALCulate<1>:MARKer<1>:FUNCtion:POWer:RESult? CPOWer
ADAPT TO SIGNAL	
AUTO LEVEL&TIME	:SENS:POW:ACH:AUTO:LTIMe
START SLOT	:SENS:POW:ACH:SLOT:START <num_value></num_value>
STOP SLOT	:SENS:POW:ACH:SLOT:STOP <num_value></num_value>
ACLR	:CONFigure<1>:CDPower:MEASurement ACLR Ergebnisabfrage: CALCulate<1>:MARKer<1>:FUNCtion:POWer:RESult? ACPower
NO: OF ADJ CHAN	:SENS:POW:ACH:ACP 2
ADJUST SETTINGS	:SENS:POW:ACH:PRES ACP CPOW OBW
SWEEP TIME	:SWE:TIME 1 s
NOISE CORR ON OFF	:SENS:POW:NCORR ON
FAST ALCR ON OFF	:SENS:POW:HSP ON
DIAGRAM FULL SIZE	-
ADAPT TO SIGNAL	
AUTO LEVEL&TIME	:SENS:POW:ACH:AUTO:LTIMe Ergebnisabfrage: SENS:POW:ACH:AUTO:LTIMe?
START SLOT	:SENS:POW:ACH:SLOT:START <num_value></num_value>
STOP SLOT	:SENS:POW:ACH:SLOT:STOP <num_value></num_value>
ACLR LIMIT CHECK	:CALC:LIM:ACP ON :CALC:LIM:ACP:ACH:RES? :CALC:LIM:ACP:ALT:RES?

EDIT ACLR LIMIT	<pre>:CALC:LIM:ACP ON :CALC:LIM:ACP:ACH 0dB,0dB :CALC:LIM:ACP:ACH:STAT ON :CALC:LIM:ACP:ACH:ABS -10dBm,-10dBm ::CALC:LIM:ACP:ACH:ABS:STAT ON :ALC:LIM:ACP:ALT1 0dB,0dB :CALC:LIM:ACP:ALT1:STAT ON :CALC:LIM:ACP:ALT1:ABS -10dBm,-10dBm :CALC:LIM:ACP:ALT1:ABS:STAT ON :CALC:LIM:ACP:ALT2 0dB,0dB :CALC:LIM:ACP:ALT2:STAT ON :CALC:LIM:ACP:ALT2:STAT ON :CALC:LIM:ACP:ALT2:ABS -10dBm,-10dBm :CALC:LIM:ACP:ALT2:ABS -10dBm,-10dBm</pre>
ADJ CHAN SPACING	:SENS:POW:ACH:SPAC:ACH 1.6MHz :SENS:POW:ACH:SPAC:ALT1 3.2MHz :SENS:POW:ACH:SPAC:ALT2 4.8MHz
ACLR ABS REL	:SENS:POW:ACH:MODE ABS
CHAN PWR / HZ	:CALC:MARK:FUNC:POW:RES:PHZ ON OFF
SPECTRUM EM MASK	:CONFigure:CKPower:MEASurement ESPectrum Ergebnisabfragen: :CALCulate<1>:LIMit<1>:FAIL? :CALCulate<1>:MARKer<1>:FUNCtion:POWer:RESult? CPOWer
LIMIT LINE AUTO	:CALC:LIM:ESP:MODE AUTO
LIMIT LINE MANUAL	:CALC:LIM:ESP:MODE MANual :CALCul:LIM:ESP:VAL <numeric_value></numeric_value>
LIMIT LINE USER	<pre>:CALC:LIMit<l>:NAME <string> :CALC:LIMit<l>:UNIT DBM :CALC:LIMit<l>:CONT[:DATA] <num_value>, <num_value>, :CALC:LIMit<l>:CONT:DOMain FREQuency :CALC:LIMit<l>:CONT:TRACe 1 :CALC:LIMit<l>:CONT:OFFset <num_value> :CALC:LIMit<l>:CONT:OFFset <num_value> :CALC:LIMit<l>:CONT:MODE RELative :CALC:LIM<l>:UPPer[:DATA] <num_value>, <num_value> :CALC:LIM<l>:UPPer:STATE ON OFF :CALC:LIM<l>:UPPer:OFFset <num_value> :CALC:LIM<l>:UPPer:OFFset <num_value> :CALC:LIM<l>:UPPer:MARGin <num_value> :CALC:LIM<l>:UPPer:MARGin <num_value> :CALC:LIM<l>:UPPer:SPACing LINear Hinweise: -Werden die y-Werte mit dem Befehl :CALCulate:LIMit<l>:LOWer[:DATA] eingegeben, dann ergibt der Limit-Check "failed", wenn die Grenzwertlinie</l></l></num_value></l></num_value></l></num_value></l></num_value></l></l></num_value></num_value></l></l></num_value></l></num_value></l></l></l></num_value></num_value></l></l></string></l></pre>
	unterschritten wird. - Wird eine benutzerdefinierte Grenzwertlinie eingeschaltet, dann hat diese Vorrang vor Grenzwertlinien, die mit AUTO und MANUAL ausgewählt wurden.
RESTORE STD LINES	:CALC:LIM:ESP:RESTore

:SENS:POW:ACH:AUTO:LTIMe Ergebnisabfrage: SENS:POW:ACH:AUTO:LTIMe?

Fernbedienbefehle

START SLOT	:SENS:POW:ACH:SLOT:START <num_value></num_value>
STOP SLOT	:SENS:POW:ACH:SLOT:STOP <num_value></num_value>
OCCUPIED BANDWIDTH	:CONFigure<1>:CDPower:MEASurement OBANdwidth
	Ergebnisabfrage :CALCulate<1>:MARKer<1>:FUNCtion:POWer:RESult? OBANdwidth
% POWER BANDWITH	:SENS:POW:BWID 99PCT
ADJUST SETTINGS	:SENS:POW:PRES OBW
ADAPT TO SIGNAL	
AUTO LEVEL&TIME	<pre>:SENS:POW:ACH:AUTO:LTIMe Ergebnisabfrage: SENS:POW:ACH:AUTO:LTIMe?</pre>
START SLOT	:SENS:POW:ACH:SLOT:START <num_value></num_value>
STOP SLOT	:SENS:POW:ACH:SLOT:STOP <num_value></num_value>
POWER VS TIME	:CONFigure:CDPower:MEASurement PVTime
	Ergebnisabfrage :CALCulate<1>:LIMit<1>:FAIL?
SWITCHING POINT	:CONFigure:CDPower:PVTime:SPOint <num_value></num_value>
RESTORE STD LINES	:CALC:LIM:PVTime:RESTore
NO OF SUBFRAMES	:CONFigure:CDPower:PVTime:SFRames <num_value></num_value>
AUTO LEVEL&TIME	:SENS:POW:ACH:AUTO:LTIMe
CODE DOM ANALYZER	:CONFigure:CDPower:MEASurement CDPower
SIGNAL STATISTIC	:CONFigure:CDPower:MEASurement CCDF oder :CALCulate:STATistics[:BTS]:CCDF[:STATe] ON Ergebnisabfrage:CALCulate:MARKer:X?
APD	:CALC:STAT:APD ON
CCDF	:CALC:STAT:CCDF ON
PERCENT MARKER	:CALC:MARKr:Y:PERC 0100%
NO OF SAMPLES	CALC:STAT:NSAM <value></value>
SCALING	
X-AXIS REF LVL	:CALC:STAT:SCAL:X:RLEV <value></value>

104

FS-K76

Fernbedienbefehle

X-AXIS RANGE	:CALC:STAT:SCAL:X:RANG <value></value>
X-AXIS MAX VALUE	:CALC:STAT:SCAL:Y:UPP <value></value>
X-AXIS MIN VALUE	:CALC:STAT:SCAL:Y:LOW <value></value>
ADJUST SETTINGS	:CALC:STAT:SCAL:AUTO ONCE
DEFAULT SETTINGSL	:CALC:STAT:PRES
ADAPT TO SIGNAL	
AUTO LEVEL&TIME	:SENS:POW:ACH:AUTO:LTIMe Ergebnisabfrage: SENS:POW:ACH:AUTO:LTIMe?
START SLOT	:SENS:POW:ACH:SLOT:START <num_value></num_value>
STOP SLOT	:SENS:POW:ACH:SLOT:STOP <num_value></num_value>
CONT MEAS	:INIT:CONT ON; :INIT:IMM
SINGLE MEAS	:INIT:CONT OFF; :INIT:IMM

Hotkey CHAN CONF

CODE CHAN AUTOSEARCH	:CONFigure:CDPower[:BTS]:CTABle[:STATe] OFF
CODE CHAN PREDEFINED	:CONFigure:CDPower[:BTS]:CTABle[:STATe] ON :CONFigure:CDPower[:BTS]:CTABle:SELect <channel name="" table=""></channel>
EDIT CHAN CONF TABLE	
NEW CHAN CONF TABLE	
HEADER VALUES	CONFigure:CDPower[:BTS]:CTABle:NAME "NEW_TAB" CONFigure:CDPower[:BTS]:CTABle:DATA <numeric>, CONFigure:CDPower[:BTS]:CTABle:COMMent "comment" CONFigure:CDPower[:BTS]:CTABle:MSHift <numeric> CONFigure:CDPower[:BTS]:CTABle:CATalog?</numeric></numeric>
ADD SPECIAL	
INSERT LINE	
DELETE LINE	
MEAS CHAN CONF TABLE	
SAVE TABLE	
SELECT SLOT	:[SENSe:]CDPower:SLOT 0(IQ_CAPTURE_LENGTH-1)
SORT CODE	
SORT MIDAMBLE	
DEL CHAN CONF TABLE	:CONFigure:CDPower[:BTS]:CTABle:DELete
COPY CHAN CONF TABLE	:CONFigure:CDPower[:BTS]:CTABle:COPY "CTAB2"

Hotkey SETTINGS

STANDARD 3GPP TSM	:[SENSe:]CDPower:STANdard GPP TSM
SCRAMBLING CODE	:[SENSe:]CDPower:SCODe 0127
MA SHIFTS CELL	:[SENSe:]CDPower:MSHift 2 4 6 8 10 12 14 16
CAPTURE LENGTH	:[SENSe:]CDPower:IQLength 263
INACT CHAN THRESHOLD	:[SENSe:]CDPower:ICTReshold -100 dB 0 dB
CODE PWR ABS REL	:CALCulate<1>:FEED "XPOW:CDP:RAT" (relative) :CALCulate<1>:FEED "XPOW:CDP" (absolute) :CALCulate<2>:FEED "XTIM:CDP:PVSL:RAT" (relative) :CALCulate<2>:FEED "XTIM:CDP:PVSL" (absolute)
INVERT Q ON OFF	:[SENSe]:CDP:QINVert ON OFF
SIDE BAND NORN INV	:[SENSe:]CDPower:SBANd NORMal INVers
NORMALIZE ON OFF	:[SENSe:]CDPower:NORMalize ON OFF

7 Prüfen der Solleigenschaften

- Vor dem Herausziehen oder Einstecken von Baugruppen den Analysator ausschalten.
- Vor dem Einschalten des Gerätes die Stellung des Netzspannungswählers überprüfen (230 V!).
- Die Messung der Solleigenschaften erst nach mindestens 30 Minuten Einlaufzeit und nach erfolgter Eigenkalibrierung des Analysators und des R&S SMIQ durchführen. Nur dadurch ist sichergestellt, dass die garantierten Daten eingehalten werden.
- Wenn nicht anders angegeben, werden alle Einstellungen ausgehend von der PRESET-Einstellung durchgeführt.
- Für Einstellungen am Analysator bei der Messung gelten folgende Konventionen:

[<taste>]</taste>	Drücken einer Taste an der Frontplatte, z.B. [FREQ]
[<softkey>]</softkey>	Drücken eines Softkeys, z.B. [MARKER -> PEAK]
[<nn unit="">]</nn>	Eingabe eines Wertes + Abschluss der Eingabe mit der Einheit, z.B. [12 kHz]

• Die in den folgenden Abschnitten vorkommenden Werte sind nicht garantiert; verbindlich sind nur die Technischen Daten im Datenblatt.

Messgeräte und Hilfsmittel

Pos.	Geräteart	Empfohlene Eigenschaften	Empfohlenes Gerät	R&S- Bestell-Nr.	Anwendung
1	Signal- generator	Vektorsignalgenerator	R&S SMIQ mit Optionen: R&S SMIQB20 R&S SMIQB11 R&S SMIQB60 R&S SMIQK14 R&S SMIQ-Z5 PARDATA	1125.5555.xx 1125.5190.02 1085.4502.04 1136.4390.02 1105.1383.02 1104.8555.02	
2	Steuerrechner für Erzeugung des Signal mittels WinIQSIM PC der entweder über ein serielles Kabel mit dem R&S SMIQ verbunden ist, oder über eine IEC- BUS Karte verfügt und mittels IEC-Bus-Kabel mit dem R&S SMIQ verbunden ist. Auf diesem PC ist die R&S WinIQSIM Software 4.00 oder höher installiert. Diese Software steht auf der Rohde & Schwarz Internet Seite http://www.rohde.schwarz.com.zum Download.zur.Verfügung				

Prüfablauf

Der Performance Test bezieht sich ausschließlich auf Ergebnisse des Code-Domain-Analyzers. Eine Überprüfung der Messwerte der POWER-, ACLR- und SPECTRUM-Messungen ist nicht erforderlich, da sie bereits durch den Performance Test des Grundgerätes abgedeckt werden.

Falls noch nicht erfolgt, muss zuerst die WinIQSIM Datei mit dem TD-SCDMA-Signal erzeugt werden und auf den R&S SMIQ unter dem Namen TDS_BS übertragen werden. Dies ist in Kapitel "Erstellen eines TD-SCDMA-Signals mit WinIQSIM" auf Seite 10 ausführlich beschrieben.

Grundeinstellung am R&S SMIQ:	[PRESET] [LEVEL: IFREQ:	0 dBm] 2020.0 MHz1	
	ARB MOD SET SMIQ ACCORDIN SET SMIQ ACCON TRIGGER OL (Diese Einstellungen sind i und dienen dazu, im ARB durch WinIQSIM generiert allem dann angenehm, wer wird.)	IG TO WAVEFORM RDING TO WAVEFORM JT MODE nur einmal nach dem Preset d MOD die Trigger-Einstellung a en Waveform-Datei zu überne nn zwischen verschiedenen Wa	ON ON des Generators nötig automatisch aus der ehmen. Dies ist vor aveforms gewechselt
	SELECT WAVEFORM. STATE: ON	Name 'TDS_BS' auswählen	
Grundeinstellung am Analysator:	[PRESET] [CENTER: [TDS BS] [AMPT: [TRIG [RESULTS [RESULTS	2020.0 MHz] REF LEVEL] EXTERN] SELECT SLOT 4] CHANNEL TABLE]	
Messaufbau und weitere Einstellungen SMIQ	 RF-Ausgang des Reverbinden Externen Triggereinger PARDATA BNC ADA Externen Referenza verbinden 	&S SMIQ mit dem RF-Einga ang des Analysators mit dem T PTER verbinden usgang des Analysators m	ang des Analysators IRIG1 Port auf der Z5 it dem R&S SMIQ
Analysator	UTILITIES REF OSC S [SETUP :	OURCE: EXT REFERENCE EXT]	

FS-K76

R	BS, TDS: CHA	NNEL TAB								
VS -				(Chan 1	.16				
•			CF 2 GHz		Slot	4				
	Туре	Chan.SF	Data Rate	Mod	Pwr.Abs	Pwr.Rel	MA.shift	∆MiD1	Δ MiD2	
			kbps	Туре	dBm	dB		dB	dB	
Ref	Midamble				-1.17	0.00	8	0.00	0.00	A
9.00	DPCH	1.16	17.60	QPSK	-10.21	-9.04	8			
dBm	DPCH	2.16	17.60	QPSK	-10.19	-9.02	8			
Att	DPCH	3.16	17.60	QPSK	-10.20	-9.03	8			TRG
35 dB	DPCH	4.16	17.60	QPSK	-10.20	-9.03	8			
	DPCH	5.16	17.60	QPSK	-10.21	-9.04	8			
	DPCH	6.16	17.60	QPSK	-10.20	-9.03	8			
1	DPCH	7.16	17.60	QPSK	-10.20	-9.03	8			
CLRWR	DPCH	8.16	17.60	QPSK	-10.20	-9.02	8			
		9.16			-51.90	-50.73				
										1

Das auf dem Bildschirm des Analysators dargestellte Messergebnis sollte folgendes Aussehen haben:

82	ns
2.72	kHz
).22	%
9999	
L.21	%
9.30	dB
17.6}	kbps
).21	dBm
L.27	%Pk
	82 2.72 0.22 9999 1.21 9.30 17.61 0.21 1.27

PRN

8 Glossar

CDEP	Code-Domain-Error-Power
CDP	Code-Domain-Power
Composite EVM	Entsprechend den 3GPP-Spezifikationen wird bei der Composite EVM-Messung die Quadratwurzel der quadrierten Fehler zwischen den Real- und Imaginärteilen des Messsignals und eines ideal erzeugten Referenzsignals ermittelt (EVM bezogen auf das Gesamtsignal).
Crest-Faktor	Verhältnis von Spitzen- zu Mittelwert des Signals
Inactive Channel Threshold	Minimale Leistung, die ein Einzelkanal im Vergleich zum Gesamtsignal haben muss, um als aktiver Kanal erkannt zu werden
Midamble Shift	Kennummer für einen Ausschnitt einer Basic Midamble.
P-CCPCH	Primary-Common-Control-Physical-Channel
RRC-Filter	Root-Raised-Cosine-Filter, für TD-SCDMA mit einem Roll-Off- Faktor von 0.22.
S-CCPCH	Secondary-Common-Control-Physical-Channel
SF	Spreading-Faktor
Slot	Bei TD-SCDMA Bezeichnung für 864 Chips oder einen Zeitabschnitt von 675 µs
x.y	Kanalnummer x.y, dabei ist: x die Code Nummer und y der Spreading-Faktor des Kanals.

9 Index

Δ

	50
	03
∧MiD2	50
	00

Α

ACLR	29
Active Channels	57
Amplitude Power Distribution	45, 46
Amplituden-Wahrscheinlichkeits-Verteil	ungsfunktion
·	
Average	

В

Befehle	
Zuordnung zu Softkey	102
Bitstream	. 62

С

Carr Freq Err	57
CCDF	
Complementary Cumulative Distribution Fu	unction
	45, 46
Chan.SF	59
Channel Power Abs	58
Channel Power Rel	58
Channel, active	112
Channel.SF	58
Chip Rate Error	57
Code-Domain-Error-Power	54
Code-Domain-Power	53
Composite Constellation	63
Composite EVM	57

D

Dämpfung	
mechanisch	74
Data Rate	58
Data Rate	59
Datenrate	67

F

Fernbedienung	80
Frequenz	
Offset	73
Funktionsfelder	52

Index

G

Gesamtleistung	34
Grenzwert	
ACP-Messung	33
Wahrscheinlichkeitsbereich	47
Grenzwertüberprüfung	
ACLR-Messung	
Grundeinstellung	13
Skalierung der X- und Y-Achse	48

Н

HF-Dämpfung	
mechanisch	74
Hotkey	
CHAN CONF	
EXIT TDS	24
MEAS	
RESULTS	
SETTINGS	
TDS BS	24

I

IQ Imbal/Offs

Κ

Kanal	
aktiver	72
Anzahl	30
Bandbreite	34
Kanalbelegungstabelle	59
Kanalleistung	27
absolut/relativ	34
Kanalnummer	67
Kanaltyp	67
Komplementäre Verteilungsfunktion	46

L

Leistung	
bez. auf 1 Hz Bandbreite	
TD-SCDMA-Signal	35
Leistungsbandbreite	
prozentual	
Leistungsmessung	
schnelle	32

Μ

Ma shift	59
Marker	
Maximum	76
Max Hold	78
Maximumsuche	76

Index

Menü-Übersicht	
Messaufbau	22
Messkurve	
Spitzenwertbildung	78
Überschreibmodus	78
Min Hold	78
Mittenfrequenz	73
Mod Type	59

Ν

Nachbarkanalleistung	. 29
Anzahl der Kanäle	. 30

0

Offeet	
Unset	
Frequenz	73
1 10900112	, 0

Ρ

P Data	57
P Midamble	57
PD1/PD2	57
Peak-Code-Domain-Error	55
Performance Test	109
Pk CDE	57
Power versus Symbol	63
Preset	
Prüfen der Solleigenschaften	109
PWR ABS / PWR REL	59

R

RECENT	65
Referenzpegel	74
RHO	57

S

Schnelle Leistungsmessung	32
Signalamplituden, Verteilungsfunktion	45, 46
Signalstatistik	45, 46
Skalierung	
Slot	64
Softkey	
% POWER BANDWIDTH	42
ACLR	26, 29, 85
ACLR LIMIT CHECK	33
ADAPT TO SIGNAL 28	3, 33, 40, 42, 48
ADD SPECIAL	68
ADJ CHAN BANDWIDTH	34
ADJUST REF LEVEL	
ADJUST REF LVL	64, 92
ADJUST SETTINGS	31, 42, 48
ALL MARKER OFF	
APD ON/OFF	
AUTO LEVEL & TIME	8, 40, 42, 44, 48
AUTO LEVEL&TIME	
AUTO LEVEL&TIME	

AVERAGE		78
BITSTREAM 51 62	> 80	96
	., 00, 5 56	71
CAPTURE LENGTH	, 50,	~
CAPTURE LENGTH	•••••	.94
CCDF		.85
CCDF ON/OFF		.46
CENTER		.73
CE-STEPSIZE		73
		21
	•••••	.57
	•••••	.87
CHAN TABLE VALUES		.87
CHANNEL TABLE), 80,	96
CLEAR/WRITE		.78
CODE CHAN AUTOSEARCH	65	86
CODE CHAN PREDEEINED	65	86
	00, 	00
	20,	00
	51,	54
CODE DOM ERROR		.80
CODE DOM POWER	3, 80,	96
CODE PWR ABS/REL		.72
COMPOSITE CONST	63	80
COMPOSITE EVM 51.5/	1 80	06
	, 00,	90
		.48
COPY CHAN CONF TABLE	69,	88
CP/ACP ABS/REL		.34
DEFAULT SETTINGS		.48
DEL CHAN CONE TABLE	69	88
		68
	•••••	200
	•••••	.32
EDIT ACLR LIMITS		.33
EDIT CHAN CONF TABLE	66,	86
FAST ACLR ON/OFF		.32
FREQUENCY OFFSET		73
		67
		.07
INACI CHAN IRRESHOLD		94
INSERT LINE	•••••	.68
INSTALL OPTION		8
INVERT Q	72,	94
LIMIT LINE AUTO		.36
		36
		200
	•••••	.39
MA SHIFTS CELL		.71
MA SHIFTS CELL		.93
MARKER 14		.75
MARKER NORM/DELTA		.75
MAXHOLD		78
MEAS CHAN CONE TABLE	•••••	68
MEAS CHAN CONF TABLE	•••••	.00
MIN HOLD		.78
NEW CHAN CONF TABLE	70,	86
NEXT MODE LEFT/RIGHT		.76
NEXT PEAK		.76
NO OF SAMPLES		46
		20
	•••••	.09
NO. OF ADJ CHAN	•••••	.30
NOISE CORR ON/OFF		.32
NORMALIZE ON/OFF	72,	95
OCCUPIED BANDWIDTH	6, 41.	85
PEAK	,	76
PEAK CODE DOMAIN ERR 51	80	96
	, 00,	76
	•••••	.10
PERCENT MARKER		.46
PK CODE DOM ERR		.55
POWER	<i>,</i> 27,	85
POWER VS SLOT		.80
		-

FS-K76

FS-K76

POWER VS SLOT			96
POWER VS SYMBOL	51,	63,	80
POWER VS TIME		43,	85
REF LVL			74
REF VALUE POSITION			74
RESTORE STD LINES		39	44
RESULT DISPLAY		00,	80
	57		00
	57,	00,	90 74
		• • • • • •	74
RF ATTEN MANUAL		• • • • • •	14
SAVE TABLE	• • • • •		69
SCALING			47
SCRAMBLING CODE			71
SCRAMBLING CODE			93
SELECT CHANNEL		64,	95
SELECT MARKER			76
SELECT SLOT	64.	69.	95
SETTINGS	,	,	71
SIDEBAND NORM / INV		72	94
SIGNAL STATISTIC		26	15
SIGNAL STATISTIC	•••••	20,	10
SINGLE MEAS		• • • • • •	40
	•••••	•••••	09
SORT MIDAMBLE			69
SPECTRUM EM MASK	26,	35,	85
STANDARD	36,	71,	93
START SLOT 28, 33,	40,	42,	48
START SLOT			91
STOP SLOT	40.	42.	48
STOP SLOT	,	í	92
SWEEP COUNT			78
SWEEP TIME			32
SWITCHING POINT		<u>11</u>	80
SVMPOL CONST	 51	م	03
SYMBOL CONST	51,	<i>60,</i>	90
			01
SYMBOL EVM	61,	80,	90
X-AXIS RANGE			47
X-AXIS REF LEVEL			47
Y PER DIV			74
Y-AXIS MAX VALUE			47
Y-AXIS MIN VALUE			47
Solleigenschaften		1	109
Sonderkanäle			67
Spitzenwertbildung			78
Spreading-Faktor			67
Status			67
STATus-OUEStionable-SVNC-Register		1	101
Suchon	•••••	1	01
Maximum			70
	••••	• • • • • •	10
Sympol Constellation	•••••		61
Symbol Error Vector Magnitude			61
Symbol EVM			58
Symbolrate			67

Т

Taste	
AMPT	74
BW	77
DISP	79
FILE	79
FREQ	73
LINES	79
MARKER	75
MEAS	
MKR FCTN	
MKR→	76
SPAN	73
SWEEP	77
TRACE	78
TRIG	
Trg to Frame	57

U

Überschreibmodus78

V

Verteilungsfunktion	46
Verteilungsfunktion der Signalamplituden45	, 46